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THE SMOOTHNESS OF FUNCTIONS OF TWO VARIABLES AND DOUBLE
TRIGONOMETRIC SERIES

Dzagnidze O.

Abstract. The notion of smoothness (according to Riemann) is introduced for functions
of two variables and some of their properties are established. As an application we prove
the uniform smoothness of an everywhere continuous sum of a double trigonometric series
in the complex form which is obtained by twice term-by-term integration, over every vari-
able rectangle [0, x]× [0, y] ⊂ [0, 2π]× [0, 2π] of a double trigonometric series in the complex
form absolutely converging at some point. An analogous consideration is given to a dou-
ble trigonometric series in the real form, the absolute values of whose coefficients form a
converging series.
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0. Introduction

According to Riemann, a function ϕ(x) defined in the neighborhood of a point
x0 ∈ R is called smooth at x0 (the term was introduced by Zygmund [5]) if the equality

lim
h→0

ϕ(x0 + h) + ϕ(x0 − h)− 2ϕ(x0)

h
= 0 (0.1)

is fulfilled.
Riemann showed that the twice term-by-term integration of a trigonometric series

in real form with coefficients converging to zero gives a function that satisfies equality
(0.1) for all x0 ∈ R ([4, p. 245], even uniformly [1, p. 184], [5], [6, p. 320]).

A detailed investigation of Riemann-smooth functions with various applications to
different classes of functions and to trigonometric series was carried out by Zygmund
[5].

1. The smoothness of functions of two variables

Definition 1.1. A function f(x, y) defined in a neighborhood of a point (x0, y0) ∈
R2 is called smooth at the point (x0, y0) if the following equality is fulfilled:

lim
(h,k)→(0,0)

f(x0 + h, y0 + k) + f(x0 − h, y0 − k)− 2f(x0, y0)

|h|+ |k| = 0. (1.1)

If f(x, y) is a smooth function at every point of some open set E ⊂ R2, then f
is called smooth in E. If f is continuous and satisfies condition (1.1) uniformly with
respect to all points (x0, y0) ∈ E, then f is called uniformly smooth in E.
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It is obvious that
1) if a function f(x, y) is smooth at a point (x0, y0), then the partial functions

f(x, y0) and f(x0, y) of one variable are smooth at the points x0 and y0, respectively.
2) If the functions a(x) and b(y) are smooth at the points x0 and y0, respectively,

then their sum f(x, y) = a(x) + b(y) is smooth at (x0, y0).
Theorem 1.2. A function of two variables which is differentiable at some point is

smooth at the same point. The converse statement is not true.
Corollary 1.3. If the functions a(x) and b(y) are differentiable at the points x0

and y0, respectively, then the product φ(x, y) = a(x) · b(y) is a smooth function at the
point (x0, y0).

Theorem 1.4. Let a function f(x, y) be summable on the rectangle [a, b] × [c, d].
Then the function

F (x, y) =

∫ x

a

∫ y

c

f(t, τ) dt dτ (1.2)

is continuous everywhere and is smooth at almost all interior points (x0, y0) of this
rectangle.

Theorem 1.5. Let (x0, y0) be the point at which the function F defined by equality
(1.2) is differentiable. Then the function

Φ(x, y) =

∫ x

x0

∫ y

y0

f(t, τ) dt dτ (1.3)

is smooth at the point (x0, y0).

2. The differentiability of a smooth function of two variables at a point
of extremum

Though a function of two variables at the point of smoothness may be nondifferen-
tiable (see Theorem 1.2), there may nevertheless occur a case where smoothness implies
differentiability.

Theorem 2.1. If a smooth function f(x, y) at a point (x0, y0) has a maximum or
a minimum at (x0, y0), then f(x, y) at (x0, y0) has zero angular partial derivatives [2]
f ′x̂(x0, y0) = 0, f ′ŷ(x0, y0)=0 and therefore df(x0, y0)=0.

3. The smoothness and symmetrical differentiability of functions of two
variables

From the differentiability of a function of two variables we have its symmetrical
differentiability without the converse statement [3]. Let us now prove that the sym-
metrical differentiability implies that the considered function is differentiable when it
is smooth.

Definition 3.1. ([3]) A function ϕ(x, y) is called symmetrically differentiable at a
point (x0, y0) if there exist finite constants A and B with the property

lim
(h,k)→(0,0)

ϕ(x0 + h, y0 + k)− ϕ(x0 − h, y0 − k)− 2Ah− 2Bk

|h|+ |k| = 0. (3.1)
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Proposition 3.2. Let a function f(x, y) be smooth at a point (x0, y0). Then for
f to be differentiable at (x0, y0) it is necessary and sufficient that f be symmetrically
differentiable at (x0, y0).

Corollary 3.3. The everywhere smooth and almost everywhere nondifferentiable
function ϕ(x, y) indicated in the proof of Theorem 1.2 is even symmetrically nondiffer-
entiable almost everywhere.

4. The smoothness and unilateral differentiability of functions of two
variables

Let U(O) and U0(O) = U(O) \ {O} denote the neighborhood and the punctured
neighborhood of the point O = (0, 0). We use the following sets ([2, p. 43]):

A+
1 = {(h, k) ∈ U(O) : h > 0}, A+

2 = {(0, k) ∈ U(O) : k > 0},
A−

1 = {(h, k) ∈ U(O) : h < 0}, A−
2 = {(0, k) ∈ U(O) : k < 0},

A+
12 = A+

1 ∪ A+
2 , A−

12 = A−
1 ∪ A−

2 .

It is obvious that A+
12 ∩ A−

12 = ∅ and A+
12 ∪ A−

12 = U0(O).
Let us introduce the following two definitions.
Definition 4.1. A function f(x, y) is called right-differentiable at the point p0 =

(x0, y0) if the equality

lim
(h,k)→(0,0)

(h,k)∈A+
12

f(x0 + h, y0 + k)− f(x0, y0)− A+h−B+k

|h|+ |k| = 0 (4.1)

is fulfilled for some finite numbers A+ and B+, and the linear function A+h + B+k for
(h, k) ∈ A+

12 is called a right-differential of f at the point p0, denoted by d+f(p0) and
we write

d+f(p0) = A+h + B+k. (4.2)

Definition 4.2. A function f(x, y) is called left-differentiable at the point p0 =
(x0, y0) if there exist finite numbers A− and B− such that the equality

lim
(h,k)→(0,0)

(h,k)∈A−12

f(x0 + h, y0 + k)− f(x0, y0)− A−h−B−k

|h|+ |k| = 0 (4.3)

is fulfilled, and the linear function A−h + B−k is called a left-differential of f at the
point p0, denoted by d−f(p0), for (h, k) ∈ A−

12, and we write

d−f(p0) = A−h + B−k. (4.4)

The next two propositions are obvious.
Proposition 4.3. A differentiable at a point p0 function f(x, y) is bilaterally dif-

ferentiable at p0 and the equalities d+f(p0) = df(p0), d−f(p0) = df(p0),

A+ = A− = f ′x̂(p0), B+ = B− = f ′ŷ(p0) (4.5)
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are fulfilled.
Proposition 4.4. If a function f(x, y) is bilaterally differentiable at a point p0 and

the equalities A+ = A− and B+ = B− are fulfilled, then f is differentiable at p0 and

A+ = f ′x̂(p0) = A−, B+ = f ′ŷ(p0) = B−. (4.6)

We have
Theorem 4.5. A smooth at some point p0 = (x0, y0) function f(x, y) is differen-

tiable at p0 if and only if it is unilaterally differentiable at the point p0.

5. The smoothness of sums of double trigonometric series

5A. The complex case. Assume that there is a double trigonometric series in
the complex form

∞∑
m,n=−∞

cmnei(mx+ny)., (5.1)

Theorem 5.1. Let series (5.1) converge absolutely at some point from the square
I = [0, 2π]2. Then by twice term-by-term integration of series (5.1) over every variable
rectangle [0, x]×[0, y] ⊂ I we obtain function Ω(x, y) which is an everywhere continuous
and uniformly smooth function on the square I.

5B. The real case. Let us consider a double trigonometric series in the real form

1

4
+

1

2

∞∑
m=1

(am0 cos mx + dm0 sin mx) +
1

2

∞∑
n=1

(a0n cos ny + c0n sin ny)

+
∞∑

m,n=1

(amn cos mx cos ny + bmn sin mx sin ny + cmn cos mx sin ny

+ dmn sin mx cos ny). (5.2)

It is assumed that
∞∑

m=1

(|am0|+ |dm0|) < ∞,

∞∑
n=1

(|a0n|+ |c0n|)) < ∞, (5.3)

∞∑
m,n=1

(|amn|+ |bmn|+ |cmn|+ |dmn|)) < ∞. (5.4)

Theorem 5.2. Let the coefficients of the double trigonometric series (5.2) in the
real form satisfy conditions (5.3) and (5.4). Then by twice term-by-term integration
of series (5.2) over every variable rectangle [0, x] × [0, y] ⊂ I we obtain the function
ω(x, y) which is everywhere continuous and uniformly smooth function on the square
I = [0, 2π]× [0, 2π].
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