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COMPLEX POINTS OF RANDOM SURFACES

Aliashvili T.

Abstract. We deal with complex points of two-dimensional surfaces. A short review of basic
results about complex points of smooth surfaces in C2 is presented at the beginning. Some
estimates for the expected number of complex points of a random planar endomorphism are
obtained.
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Complex points of smooth two-dimensional surfaces in C2 play significant role in
some problems of complex analysis, and symplectic geometry. For example, existence
of complex points sometimes enables one to construct so-called attached analytic discs
with boundaries in a given surface. Correspondingly, complex points are related to
the so-called Bishop problem about the existence of analytic discs attached to the
graph of an arbitrary smooth complex-valued function in the plane. Despite con-
siderable progress, this problem is not yet completely solved and complex points of
two-dimensional surfaces attract permanent interest, [8].

There are also some open problems concerned with complex points on compact
surfaces. It is remarkable that in the setting of compact surfaces this problem has
interesting topological aspects. In particular, it is well-known that the geometry of
complex points on a compact surface X is closely related to its Euler characteristic
χ(X).

We start by recalling necessary information about complex points and random
Gaussian surfaces. Next, we describe two examples of random polynomials appropri-
ate for our setting. Finally, we present the main result which is concerned with the
asymptotic of the expected number of complex points.

Definition 1. Let X be a smooth oriented two-dimensional surface in C2. A point
p ∈ X is called a complex point of X if the tangent plane TpX is a complex line in C2.

As was shown in recent papers [10], [3], [4], [7], [9], [6], computing topological
invariants of random polynomials leads to interesting problems and results. In our
context, a natural problem in spirit of the named approach is to compute or estimate
the expected number of complex points of a Gaussian random planar endomorphism
which we call random plend.

It is well known that a Gaussian random planar endomorphism of fixed algebraic
degree is almost surely (i.e., with probability one) proper and stable in the sense of
Whitney [9], [6] which makes it possible to introduce several useful numerical charac-
teristics of its geometric behaviour such as the topological degree and the number of
cusps. Hence one can consider the expected values of these characteristics and obtain in
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this way numerical invariants of a given random planar endomorphism. This strategy
was used in [7], [6], [2] and led to a number of new results.

Following the same strategy, it is easy to show that a random plend of fixed algebraic
degree almost surely has a finite number of complex points all of which are transversal.
Thus it makes sense to speak of the expected number of complex points of a random
plend. We study this invariant using the techniques described in [5] and then briefly
outline how it can be related to the two other invariants.

Recall that the expected value of the topological degree was found in [6] for random
planar endomorphism defined by the gradient of random polynomial with a certain ro-
tation invariant Gaussian distribution of coefficients introduced in [10]. Since Maslov
index M(F ) [8] of a plend F can be expressed as the topological degree of associ-
ated plend ∂F components of which are linear combination of partial derivatives of
components of F , it turns out that estimates for the expected gradient degree appear
applicable for Maslov index. If all coefficients of random polynomial are standard nor-
mals, we find the asymptotic of the expected value of C(F ) as the algebraic degree of
the random plend tends to infinity.

As was already mentioned, we deal with Gaussian random polynomials, which
means that their coefficients are real random variables and have multivariate normal
distribution. The term ”random polynomial” always refers to this situation. To be
more precise, we reproduce some concepts and notation from probability theory. All
necessary background can be found in [3].

Recall that a (one-dimensional) Gaussian (normal) random variable ξ is defined as
a real-valued random variable with Gaussian (normal) density

fξ(x) =
1√
2πσ

e−
(x−a)2

2σ2 ,

where σ > 0, −∞ < a < +∞. Parameters a and σ determine its expectation and
variance:

a = Eξ, σ2 = Dξ.

If a = 0, we speak of a central normal distribution. If a = 0 and σ = 1 one obtains the
standard normal distribution

Φ(x) =
1√
2π

·
∫ x

−∞
e−

u2

2 du.

Recall also that, for a pair of random variables (ξ, η), the number

cov(ξ, η) = E
[
(ξ − Eξ) · (η − Eη)

]

is called covariation of ξ and η. If cov(ξ, η) = 0, then ξ and η are called non-correlated,
in particular (stochastically) independent random variables are non-correlated. The
variance Dξ is defined as cov(ξ, ξ) = Dξ.

Recall finally that a multidimensional central normal distribution Ξ is defined as a
distribution with density

fΞ(x) =

√
|A|

(2π)
n
2

· e− 1
2
·Q(x),
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where

Q(x) = xAxT =
n∑

i,j=1

aijxixj,

and |A| denotes the determinant of a positive definite matrix A = (aij). The word
central indicates again that EΞ = 0 (sometimes one says that this is a distribution
with zero mean [3]). Matrix A is called the covariation matrix of the above distri-
bution because its elements are given by pairwise covariations of the components of
distribution Ξ.

Let P be a Gaussian random polynomial on Rn in the above sense. Then it can be
written as

P (x) =
∑

α

ξαxα

α = (α1, α2, . . . , αn), x = (x1, x2, . . . , xn), xα = xα1
1 · xα2

2 · . . . · xαn
n , where ξα have

multidimensional normal distribution. To specify this distribution it is sufficient to
give its covariation matrix explicitly. Denote by m the algebraic degree of P .

Example 1. Let all coefficients ξα be i.i.d. (independent identically distributed)
standard normals. Then P is called a standard Gaussian random polynomial in n
variables of algebraic degree m. Taking n copies of independent standard Gaussian
polynomials we get standard random endomorphism in Rn.

It turned out that in the case of several variables such polynomials are sufficiently
difficult to work with. We also give the following example of Gaussian random poly-
nomial introduced in [10].

Example 2. Denote by Hm(Rn+1) the set of all homogeneous polynomials of
algebraic degree m (m-forms) on Rn+1 and consider a Gaussian random homogeneous
polynomial f from Hm(Rn+1) having the form

F (x) =
∑

m0+m1+...+mn=m

Fm0,m1,...,mnxm0
0 xm1

1 . . . xmn
n , x ∈ Rn+1,

where Fm0,...,mn are independent normal random variables with zero mean and variances

EF 2
m0,...,mn

=
m!

mo! . . .mn!
.

We call it a convenient Gaussian random m-form.
It can be verified that such a random polynomial is invariant with respect to the

natural action of the group O(n + 1) on Hm(Rn+1) for which reason it is said to be
rotation invariant. As was shown in [9], an important characteristic of a rotation
invariant Gaussian random polynomial is given by the so-called parameter r which is
defined by the formula

r =
E

(
∂F
∂x0

(e)
)2

EF (e)2
,

where e = (1, 0, . . . , 0) ∈ Sn is a chosen point. It is possible to check by a direct
computation that in the above example we get r = m. Taking n independent random
polynomials of such type we come to the concept of convenient random endomorphism.
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There is one more type of random polynomial which is relevant for our purposes.
It was introduced in [9] and can be described as follows. Introduce a scalar product on
Hm(Rn+1) by the formula

(f, f ′) =

∫

x∈Sn

f(x)f ′(x)dx, f, f ′ ∈ Hm(Rn+1).

Gaussian random m-form F is called satisfactory if

E
(
(f, F )(f ′, F )

)
= (f, f ′), f, f ′ ∈ Hm(Rn+1).

According to [9] such a random polynomial is rotation invariant and its parameter r is
equal to

m(m + n + 1)

n + 2
.

Consider now a general (i.e. not necessarily homogeneous) Gaussian random poly-
nomial on Rn+1 of algebraic degree N such that each of its homogeneous components
of degree m ≤ N has convenient Gaussian distribution specified in Example 2. In such
situation we speak of a convenient random polynomial of algebraic degree N . This is
precisely the type of random polynomial we wish to consider. There are (at least) two
main reasons for such choice: first, such polynomials and their numerical invariants ap-
peared useful in physics, and, second, for systems of random polynomials of such type
M. Shub and S. Smale [10] obtained simple explicit formulae for the expected number
of real roots, which enabled one to obtain a lot of results about numerical invariants
of such polynomials [3].

One can analogously define a (non-homogeneous) satisfactory random polynomial
of algebraic degree N . For such polynomials, one can also obtain some useful results
about their numerical invariants.

After these preparations we are ready to deal with the complex points of Gaussian
random plends. First, notice that in this case components of ∂F are Gaussian random
polynomials. This follows from explicit formulae for the coefficients of ∂F and from the
fact that sum of independent Gaussian variables is again a Gaussian random variable.

It is easy to check that, for convenient random plend, components of ∂F are rota-
tion invariant. Moreover, by direct verification one can check that the parameters of
components of convenient plend are both equal to the parameters of the gradient of
convenient random polynomial. Since the expected value of rotation invariant Gaus-
sian plend is completely determined by its parameter, we can use the main result of
[6], which directly leads to the desired result.

Theorem 1. The expected number of complex points E(C(F )) of a convenient
random plend F of algebraic degree m is asymptotically equivalent to

√
m as m →∞.

Similar results can be obtained for some other types of random surfaces.
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