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Abstract. The Dirichlet generalized problem for the Laplace equation in the case of a finite
m-connected domain D which lies in the plane z = x + iy is considered. Under the Dirichlet
generalized problem is meant the problem when a boundary function has a finite number
of first kind points of discontinuity. It is shown that the method of fundamental solutions
(MFS) is not suitable for solving of the considered problem. To avoid this situation it is
recommended to smooth preliminary the boundary function, i.e., to reduce the generalized
problem to an ordinary problem and to solve the latter by the MFS method. Analytic
forms of smoothing functions for a finite simply and multiply connected domains are given.
Numerical examples are considered to illustrate effectiveness and simplicity of the proposed
way.
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1. The Dirichlet Generalized Problem for a Harmonic Function

Let D be a finite m-connected domain in the plane z = x + iy ≡ (x, y) with the

boundary S =
m⋃

k=1

Sk, where each Sk is a closed simple contour (Jordan curve) and

Sk

⋂
Sj = ∅ for k 6= j. Moreover, we assume that parametric equations of the contours

Sk are given and the contours Sj(j = 1, 2, . . . , m− 1) lie inside the finite domain which
is bounded by the contour Sm.

It is known that the classical statement of the Dirichlet ordinary boundary value
problem for the Laplace equation requires continuity of the boundary function. How-
ever, in practical problems (for example, during determination of the temperature of
the thermal field or of the potential of the electric field and so on) there are cases when
the boundary function is piecewise continuous and therefore it is necessary to consider
the Dirichlet generalized problem (see [1,2]).

A. On the boundary S of the domain D a function g(τ) is given which is continuous
everywhere, except a finite number of points τ1, τ2, . . . τn at which it has break points
of the first kind. It is required to find a function u(z) ≡ u(x, y) ∈ C2(D)

⋂
C(D \

{τ1, τ2, · · · , τn}) satisfying the conditions

∆u(z) = 0, z ∈ D, (1.1)

u(τ) = g(τ), τ ∈ S, τ 6= τk (k = 1, 2, . . . , n), (1.2)
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|u(z)| < M, z ∈ D, (1.3)

where ∆ is the Laplace operator and M is a real constant.

It is known [1,2] that Problem (1.1)-(1.3) is correct, i.e., the solution exists, is
unique, depends continuously on the data, and for the generalized solution u(z) the
generalized extremum principle is valid:

min
z∈S

u(z) < u(z)
z∈D

< max
z∈S

u(z), (1.4)

where for z ∈ S it is assumed that z 6= τk (k = 1, n).
Note that the additional requirement (1.3) of boundedness concerns actually only

the neighborhoods of break points of the function g(τ). In particular, if g−(τk) and
g+(τk) are the limit values of the boundary function g(τ), when τ tends to the point
τk along S, respectively, in the positive and negative directions, then the following
theorem explains the behavior of the generalized solution in the neighborhood of the
point τk (see [1,3]).

Theorem 1. The limit values of the solution u(z) of the Dirichlet generalized
problem, when the point z ∈ D approaches the point τk lie between g−(τk) and g+(τk).

It should be noted that condition (1.3) plays an important role in the extremum
principle (1.4) and, consequently, in the theorem on uniqueness of the solution to
Problem A (see [1]). Evidently, if the function g(τ) is continuous on S, then the
Dirichlet generalized problem coincides with the ordinary problem.

Remark 1. If the domain D is the interior of the circle S : x = a cos t, y =
a sin t (0 ≤ t ≤ 2π), then the solution of the Problem A is represented by Poisson’s
integral [1,2]:

u(z) =
1

2π

2π∫

0

g(aeit)
a2 − r2

r2 − 2ar cos(t− ϕ) + a2
dt (1.5)

where r < a and z = reiϕ (0 ≤ ϕ ≤ 2π). When r = a representations (1.5) lose
meaning. However, it is proved [1,2] that

lim
z→τ

u(z) = g(τ), τ = aeit, τ 6= τk, z ∈ D.

Remark 2. On the basis of the formula (1.5) the Problem A for simply connected
domains can be solved by the method of conformal mapping [1]. In particular, for this
it is necessary to know the function z = ω(ζ) which conformally maps the unit disk
G(|ζ| < 1) onto a simply connected domain D, and for calculation of the solution to
the Problem A at an arbitrary point of the initial domain D (also for determination the
pre-images tk of the points τk(k = 1, 2, . . . , n) during conformal mapping z = ω(ζ)) it is
necessary to know the function ζ = f(z) which is inverse to the function z = ω(ζ). But
an exact or approximate construction of noted functions for a given simply connected
domain D (except a rather limited family of domains) are very difficult mathematical
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problems.

2. A note on Solving of the Dirichlet Generalized Problem by the MFS

In general, it is known [4,5] that the methods used for approximate solving of ordi-
nary boundary problems are less suitable (or not suitable at all) for solving problems
with boundary singularities. Therefore researchers try to conduct preliminary improve-
ment of the posed boundary problem. More precisely, they try to reduce, if possible,
the posed problem by smoothing a boundary function to solving the ordinary problem.
For example, the question about application of the MFS to harmonic and biharmonic
problems with certain singularities is considered in [6,7,8,9].

Similar case takes place in solving the Dirichlet generalized boundary problem by
the MFS. In particular, the convergence is very slow and the accuracy is very low in
the neighbourhood of singularity of the boundary function. In general, the MFS may
be used for solving both ordinary and generalized problems (see [10,11,12]). In both
cases for the finite domain D, the solution is approximated by

uN(z) =
N∑

k=1

ak ln |z − z̃k|, z ∈ D, (2.1)

where the points (singularities) z̃k (k = 1, 2, · · · , N) lie on the auxiliary contour S̃.
In the approximation (2.1), the number N and the locations of the points z̃k and the
coefficients ak are determined so that uN(z) satisfies the boundary conditions as well
as possible.

Concerning the rate of the convergence and accuracy in the neighbourood of singu-
larity of the boundary function , the noted fact was expected. Indeed, the fundamental
solutions (functions) which are participated in (2.1) have a high degree of smoothness
on the contour S, therefore, such smooth functions are less suitable for approximation
of discontinuous functions. Taking into account the fact that for a very big N com-
putation becomes complicated, the above noted facts makes the MFS less suitable (or
not suitable at all) for approximate solving of Problem A.

It is evident that in order to avoid this situation, we should remove the reason of
slow convergence of a approximate process. For this, a reduction of Problem A to
ordinary problem is necessary.

3. A Method of Reduction of the Dirichlet Generalized Problem to an
Ordinary Problem

For reduction of Problem A it is sufficient to have a function u0(z) which would be
a solution of equation (1.1), bounded in D, continuous in D everywhere, except the
points τ = τk, and would have the same jumps at the points τk, as g(τ) has. Indeed,
if such a function is constructed, then by introduction of a new unknown function

v(z) = u(z)− u0(z), (3.1)

for its determination we have already a Dirichlet ordinary problem.
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B.
∆v(z) = 0, z ∈ D, (3.2)

v(τ) = f(τ), τ ∈ S, (3.3)

where f(τ) is a continuous function on the contour S (since the function f(τ) has
removable break points at τk, i.e.,f(τk) = f−(τk) = f+(τk)).

After smoothing of the boundary function g(τ), the Problem B is solved by MFS,
i.e., the approximate solution of the Problem B is sought in the form

vN(z) =
N∑

k=1

ak ln |z − z̃k|, z ∈ D, (3.4)

where the points z̃k(k = 1, 2, · · · , N) are situated ”uniformly” on the auxiliary contour

S̃ (S̃ ⊂ R2\D) [3,4,5]. As for the coefficients ak, they can be found from the system:

N∑

k=1

akln|zj − z̃k| = f(zj), (j = 1, 2, · · · , N), (3.5),

where the collocation points zj are situated ”uniformly” on the contour S (see [6,7,8].
On the basis of (3.1) approximate solution of the Problem A will be

uN(z) = vN(z) + u0(z), z ∈ D, z 6= τk. (3.6)

For simplicity of presentation the case, when D is simply connected domain is
considered separately. In this case in the role of u0(z) the function (see [1])

u0(z) =
n∑

k=1

hk

δk

arg(z − τk) (3.7)

can be taken, where hk and δk are the jumps of the functions g(τ) and arg(τ − τk) at
the point τk, along S, respectively; In particular

hk = g+(τk)− g−(τk), δk = ϕ+
k − ϕ−k ,

where g−(τk), g+(τk) and ϕ−k , ϕ+
k are the limit values of g(τ) and arg(τ − τk) when

τ tends to the point τk along S, respectively, in the positive and negative directions
(by the positive direction the movement along the boundary in the counter-clockwise
direction is meant); if τk is not an angular point, then δk = −π; arg denotes the
properly chosen branch of the argument; It is evident that a range of the function
arg(z − τk) in D depends on a location of the point τk on the contour S.

Let D be a finite m-connected domain with the boundary S =
m⋃

k=1

Sk, where each

Sk is a closed simple contour. In this case we can take (see [3])

l∑
i=1

ki∑

k=1

ui,k(z) (3.8)
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in the role of the function u0(z) with

ui,k(z) =





hi,k

δi,k

arg

(
z − τi,k

(z − zi,0)(zi,0 − τi,k)

)
for Γi 6= Sm,

hm,k

δm,k

arg(z − τm,k) for Γi = Sm,

(3.9)

where by Γi(1 ≤ i ≤ l) those of the contours Sk (k = 1, 2, · · · ,m) are denoted on which
the break points lie, l(1 ≤ l ≤ m) is the number of these contours; τik (k = 1, 2, · · · , ki)
are the break points on the contour Γi; ki is the number of break points on the contour
Γi( it is evident that 1 ≤ ki ≤ n and (k1 + k2 + · · · + kl = n); zi,0 is a ”center” of the
finite domain Bi with the boundary Γi (zi,0 ∈ Bi, i 6= m), while

δi,k = ϕ+
i,k − ϕ−i,k,

ϕ+
i,k = lim

τ→τi,k+
arg

(
τ − τi,k

(τ − zi,0)(zi,0 − τi,k)

)
,

ϕ−i,k = lim
τ→τi,k−

arg

(
τ − τi,k

τ − zi,0)(zi,0 − τi,k)

)
, τ ∈ Γi, Γi 6= Sm;

δm,k = ϕ+
m,k − ϕ−m,k,

ϕ+
m,k = lim

τ→τm,k+
arg(τ − τm,k),

ϕ−m,k = lim
τ→τm,k−

arg(τ − τm,k), τ ∈ Sm.

In the formulas the sign ”—-” denotes complex conjugate.

4. Examples of Solving Generalized Problems

In this section on the basis of considered scheme the results of approximate solving
of generalized problem for simply and doubly connected domains are given. In all
examples considered below the coefficients ak of expansion (3.4) are found from system
(3.5).

In the Tables, N is the number of auxiliary and collocation points on the contours
S̃ and S, respectively; ε is an a posteriori error estimate of the solution of the problem
(3,2),(3,3):

ε = max|f(zi)− vN(zi)|,
where f(zi) = g(zi) − u0(zi)(zi 6= τk); The points zi(i = 1, 2, · · · ,M) are situated
”uniformly” on the contour S. If zi = τk, then f(zi) = f+(τk) ≡ f−(τk). In numerical
experiments M = 10000 was taken.

Example 1. Let the domain D be the interior of the circle S : x = 2 cos t, y =
2 sin t (0 ≤ t ≤ 2π), in the role of optimal axiliary contour S̃ (in the sense of accuracy

of approximate solution) for the given N the circle S̃ : x = 2.02 cos t, y = 2.02 sin t
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(0 ≤ t ≤ 2π) is taken in solving Problem B by MFS. We took a function with one
break point τ1 = (2, 0) as function g(τ). In particular, we took the function

g(τ) =





x2 − y2 − 4, (x, y) ≡ τ ∈ τ1τ2, (y ≥ 0),

1
ln 3

ln |τ − z0|, τ ∈ τ2τ1, y ≤ 0,

where τ1τ2, τ2τ1 are open arcs of the contour S, and τ2 = (−2, 0) and z0 = (−1, 0).
For the considered case: π

2
≤ arg(z− τ1) ≤ 3π

2
, z ∈ D, z 6= τ1; g+(τ1) = 0, g−(τ1 =

1, ϕ+
1 = π

2
, ϕ−1 = 3π

2
, therefore h1 = −1 and δ1 = −π (see (3.7)).

Auxiliary points, collocation points and points for calculation the a posteriori esti-
mate ε in this and other examples are situated uniformly with respect to the parameter
t on the contours S̃ and S, respectively. In the Table 1, uN(zk)) is the value of approx-
imate solution to the Problem A at the point zk ∈ D which is calculated with (3.6);
u(zk) is value of exact solution to the Problem A at point zk ∈ D which is calculated
by Poisson’s integral (1.5).

Table 1

N = 1500; ε = 0.610−5

k zk uN(zk) u(zk)
1 (0, 0) −1.68453512403465 −1.68453512318792
2 (1, 1) −3.42897119266898 −3.42897119234831
3 (1.99999, 0) 0.49997924070930 0.49997903692072

Example 2. The domain D is the interior of the ellipse S : x = 2 cos t, y =
sin t(0 ≤ t ≤ 2π). In the role of g(τ) we took a function with four break points:
τ1 = (2, 0), τ2 = (0, 1), τ3 = (−2, 0), τ4 = (0,−1). In particular, we took the function

g(τ) =





x + y, (x, y) ≡ τ ∈ τ1τ2

ln(x2 + y2), τ ∈ τ2τ3

x + y, τ ∈ τ3τ4

ln(x2 + y2), τ ∈ τ4τ1,

where τ1τ2, τ2τ3, τ3τ4, τ4τ1 are open arcs of the contour S. In the considered case:
g+(τ1) = 2, g−(τ1) = 2 ln 2; g+(τ2) = 0, g−(τ2) = 1; g+(τ3) = −2, g−(τ3) =
2 ln 2; g+(τ4) = 0, g−(τ4) = −1, and h1 = 2 − 2 ln 2, h2 = −1, h3 = −2 − 2 ln 2, h4 =
1, δk = −π (k = 1, 2, 3, 4).

For illustration, the form of graph of the function g(τ) is given in the Figure a), and
the form of graph of the function f(τ) is given in the Figure b). In solving the Problem

B by MFS we took the ellipse S̃ in role of the auxiliary contour S̃: x = 2.005 cos t, y =
1.005 sin t (0 ≤ t ≤ 2π)

In the Table 2 the values of approximate solution to the Problem A calculated by
(3.6) on the various points zk ∈ D are given.
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Table 2

N = 2000 ε = 0.510−3

k zk uN(zk)
1 (0.0) 0.192275110
2 (0.5, 0.5) 1.04613621615
3 (−0.5, 0.5) 0.1775304638
4 (−0.5,−0.5) −0.792471601
5 (0.5,−0.5) 0.3552674521
6 (1.99999, 0) 1.693234555
7 (0, 0.99999) 0.50001643577
8 (−1.99999, 0) −0.306969584
9 (0,−0.99999) −0.5000780554

Example 3. The domain D is a finite doubly connected domain with the boundary
S = S1 ∪ S2 where the contour S1 (S1 ≡ Γ1) is the ellipse S1 : x = −3 + 2 cos t, y =
sin t (0 ≤ t ≤ 2π) and the contour S2 (S2 ≡ Γ2 is circle S2 : x = 10 cos t, y =
10 sin t (0 ≤ t ≤ 2π).

In the role a boundary function g(τ) we took the function

g(τ) =





g1(τ), τ ∈ S1,

g2(τ), τ ∈ S2

(4.1)

In (4.1) the functions g1(τ) and g2(τ) have the form

g1(τ) =





1, τ ∈ τ1,1τ1,2 ,

2, τ ∈ τ1,2τ1,3 ,

3, τ ∈ τ1,3τ1,4 ,

4, τ ∈ τ1,4τ1,1 ;
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g2(τ) =





1, τ ∈ τ2,1τ2,2 ,

3, τ ∈ τ2,2τ2,3 ,

5, τ ∈ τ2,3τ2,4 ,

7, τ ∈ τ2,4τ2,1,

on the contours S1 and S2, respectively.
It is evident that the jumps of the function g(τ) at the break points: τ1,1 =

(−1, 0), τ1,2 = (−3, 1), τ1,3 = (−5, 0), τ1,4 = (−3,−1), τ2,1 = (10, 0), τ2,2 = (0, 10), τ2,3 =
(−10, 0), τ2,4 = (0,−10), respectively are equal to: h1,1 = −3, h1,2 = 1, h1,3 = 1, h1,4 =
1, h2,1 = −6, h2,2 = 2, h2,3 = 2, h2,4 = 2;

On the basis of the Section 3 for smoothing of the boundary function (4.1) we
used the functions (3.8) and (3.9), in which l = 2,m = 2, δik = −π (i = 1, 2; k =
1, 2, 3, 4; ki = 4), and z1,0 = (−3, 0).

In solving of the Problem B by MFS in the role of contours S̃1 and S̃2 we took
the contours S̃1 : x = −3 + 2.01 cos t, y = 1.01 sin t and S̃2 : x = 10.01 cos t, y =
10.01 sin t, (0 ≤ t ≤ 2π).

In numerical experiment the number of collocation (auxiliary) points on the con-

tours S1 and S2 (S̃1 and S̃2) were equal N1 = 800 and N2 = 800, i.e., N = 1600.
Analogously M = M1 + M2, where M1 = M2 = 5000.

In the Table 3 the values of approximate solution uN(z) of the Problem A calculated
by (3.6) on the various points zk ∈ D are given.

Table 3

N = 1600; ε = 10−3

k zk uN(zk)
1 (9.999, 0) 4.0000619
2 (0, 9.999) 1.999971
3 (−9.999, 0) 3.9996653
4 (0,−9.999) 5.99981577
5 (−0.999, 0) 2.50078230
6 (−3, 1.001) 1.50039327
7 (−5.001, 0) 2.500895444
8 (−3,−1.001) 3.500318976
9 (5, 0) 3.69552249

5. Concluding Remarks

From Tables 1,2,3 it seems that for the approximate solution uN(z) of the Problem
A at the considered points of the domain D, the conditions of the generalized extremum
principle and Theorem 1 are valid.

It is known [7] that for fixed N there exist an optimal auxiliary contour S̃ (or
optimal location of auxiliary points) in sense of accuracy of approximate solution of
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Problems type B. In [7], it is shown that: 1) if for given N , corresponding optimal

contour S̃ is moving off contour S then the conditionality of the matrix of system (3.5)

is deteriorated and on the contrary, by moving S̃ to the S, improving. On the basis
of noted, for construction with the move high accuracy of the approximate solution
uN(z), in the considered examples, it is sufficient simultaneously to increase of N and

to approach of S̃ to S.
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