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Abstract. We present a general mathematical method of constructing stationary solutions
of spatial axially symmetric problems, with partially unknown boundaries, of jet theory, in
particular, we consider a liquid flow of finite width round a spatial circular wedge. Un-
known functions (velocity potential, flow function) and their arguments on each interval of
the boundary satisfy two inhomogeneous boundary conditions. The system of differential
equations with respect to the velocity potential and flow function are reduced to the normal
form. Unknown functions are represented by a sum of holomorphic and generalized analytic
functions. One problem from the theory of spatial jets is solved.
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In the present work we present a general mathematical method of solutions of
spatial axially symmetric with partially unknown boundaries problems of the theory
of jet flows, in particular, we consider spatial axially symmetric jet flows ([1, 2]).

The symmetry axis coincides with the x-axis, and the distance to the x-axis is
denoted by y. The use is made of the right coordinate system.

Of an infinite set of half-planes passing through the x-axis, we choose arbitrarily
one. But for the effectiveness, it is sometimes better to take two symmetric half-
planes lying in one plane. The boundary of the domain under consideration consists
of known and unknown parts. The known parts of the boundary are represented by
the straight lines and their segments, while unknown portions of the boundary consist
of two curves. Every segment of the boundary has two boundary conditions. The
unknown functions (velocity potential, flow function) and their arguments on every
segment of the boundary satisfy two inhomogeneous boundary conditions. A system
of differential equations with respect to the velocity potential and flow function is
reduced to the standard form. The unknown functions are represented by the sum of
holomorphic functions and generalized analytic functions.

The velocity potential and the flow function ψ are the functions of only cylindrical
coordinates x and y, and the domain occupied by the moving liquid on an arbitrarily
chosen meridional half-space we denote by S(z), where z = x + iy. On the planes
ω0(z) = ϕ0(x, y) + iψ0(x, y), w = ω′0(z)/z′(s), the domain S(z) is associated, respec-
tively, with S(ω′0(z)), S(w) ([1, 2]).
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As is known, the functions ϕ(x, y) and ψ(x, y) satisfy the following equations:

∂ϕ

∂x
=

1

y

∂ψ

∂y
= vx,

∂ϕ

∂y
= −1

y

∂ψ

∂x
= vy, (1)

where vx and vy are the projections of velocity onto the axes x and y. Omitting from
(1) by turns ϕ and ψ, we obtain

∆ϕ +
1

y

∂ϕ

∂y
= 0, ∆ψ − 1

y

∂ψ

∂y
= 0, (2)

where ∆ is the Laplace operator ([1, 2]).
Recall that the hydrodynamical problem is assumed to be solved if any of the two

functions ϕ(x, y) or ψ(x, y) is known. Besides the equations, for their definition we
have the following boundary conditions. The normal velocity on a free surface and
on the body surface is equal to zero, ∂ϕ

∂n
= 0, where n is the normal directed into the

liquid. The flow function ψ on the body surface and on a free surface is constant,
ψ = const. The last condition, ψ = const, is equivalent to the condition ∂ϕ

∂n
= 0 for

ϕ. The constant in the condition ψ = const may take different values on different
boundaries. On the x-axis we can put ψ = 0. But the difference of values ψ on the
flow surfaces is equal to the liquid discharge between these surfaces, divides by 2π, and
hence on the tube walls (if the tube lays on the boundary) ψ = πv∞n2/(2π), where n
is the tube radius and v∞ is the accumulating from the left flow at infinity. A form
of free surfaces is unknown beforehand, but there is the supplementary condition of
constancy of the velocity modulus v, equivalent to the condition of pressure constancy.

This condition can be written in the form 1
y2

[(
∂ψ
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)2
+

(
∂ψ
∂y

)2
]

=
(

∂ϕ
∂x

)2
+

(
∂ϕ
∂y

)2
= v2

0

[1, 2], where v0 is equal to v on a free surface. The unknown functions ϕ and ψ can be
represented as follows: ϕ = y−1/2ϕ1, ψ = y1/2ψ1. Then

∆ϕ1 +
1

4
ϕ1 = 0, ∆ψ1 − 3

4
y−1ψ1 = 0. (3)

The system (1) is compatible, whereas the system (3) is incompatible.
The half-plane Im(ζ) ≥ 0 (or Im(ζ)) of the plane ζ = ξ + iη is mapped conformally

onto the domains S(z) occupied by the moving liquid, onto the the domains S(ω0) and
S(w), where w = ω′0(ζ)/z′(ζ). Thus we obtain
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∂ξ
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1
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,
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= − 1
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∂ψ
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The system (4) can be rewritten as
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or
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(6)

Assuming that there exist analytic (holomorphic) functions z = f(ζ) = x(ξ, η) +
iψ(ξ, η), ζ = ξ + iη, ω0(ζ) = ϕ0(ξ, η) + iψ0(ξ, η), w(ζ) = ω′(ζ)/z′(ζ), we can map
conformally Im(ζ) ≥ 0 onto the domains S(z), S(ω0(ζ)) and S(w).

It can be easily seen from (1) that ∂ϕ
∂x

∂ψ
∂x

+ ∂ϕ
∂y

∂ψ
∂y

= 0. Consequently, the lines ϕ =

const and ψ = const are orthogonal, however, the mapping f(x, y) is not conformal.
There take place the equalities ϕ(x,−y) = ϕ(x, y), ψ(x,−y) = ψ(x, y), i.e., ϕ and

ψ are the even functions with respect to y2. The system (6) can be rewritten as follows:

ϕ(ξ, η) = y−1/2ϕ1(ξ, η), ψ(ξ, η) = y1/2ψ1(ξ, η);

ϕ1(ξ, η) = ϕ10(ξ, η) + ϕ2(ξ, η), ψ1(ξ, η) = ψ10(ξ, η) + ψ2(ξ, η);
(7)

It follows from (7) that

∆ϕ1(ξ, η) +
1

4
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(8)

Recall that the system (8) is incompatible. Thus we can write the first equation of (8),
bearing in mind (7), as

ϕ1(ξ, η) +
1

4
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2
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= ϕ∗10(ξ, η), (9)

where

ϕ∗10(ξ, η) = −
{
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+
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}
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The function y−1/2(ξ, η)ϕ10(ξ, η) and the Green’s function G for Im(ζ) ≥ 0 are known.
As for the function ψ2(ζ), we act analogously. Thus we have obtained the Fredholm
integral equation of second kind. The homogeneous equation, corresponding to equa-
tion (9), has no characteristic numbers. A solution (9) can be obtained by the method
of successive approximations.
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