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Abstract. The principle contact problem is a known problem. The availability and the
uniqueness of the solution of this problem in the classic theory of elasticity are studied in
[1]-[5] for the space, in [6], [7] for the plane. The principle contact problem in the three-
dimensional theory of elastic mixture is examined in [8], [9]. In this paper, the solution of the
principle contact problem for the elastic mixture, when the contact line is a circle, is given
by absolutely and uniformly convergent series. The uniqueness of solution of this problem is
studied.
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Problem. Let the circle S, with the radius R, divide the plane in two domains:
inner domain D0 and outside one D1. It is supposed that D0 and D1 are filled with
different elastic mixtures. For the static equation systems [10], [11] of the elastic
mixture theory:
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In each domain Dj (j = 0, 1) a regular solution uj(x) ∈ C2(Dj

⋂
C1(D̄j)) (D̄j =

Dj

⋃
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Theorem. Any two solutions of the principal contact problem of statics elastic
mixture theory may differ from each other only by the constant vector.

We use the Green’s formula to prove for D0 inner and D1 outer domains:
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where vj is the difference of any two solutions in Dj, j = 0, 1. vj satisfies system (1)
and homogeneous conditions (2)0 , Ej are the quadratic forms corresponding to the
potential energy of the mixture. They are positively defined forms. In the (3), by term
to term addition we obtain a new equality, under integral expression in the right part
of which may be transformed thus:

(v0)+ ·(P 0v0)+−(v1)− ·(P 1v1)− = ((v0)+−(v1)−)·(P 0v0)++(v1)− ·[(P 0v0)+−(P 1v1)−].

According to the conditions (2)0 this difference is always equal to zero. We will get,
that Ej(v

j, vj) = 0, from where [11]:
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. The theorem is proved.

We seek for solution uj the following way [12]:
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k = 1, 2, 3, 4; j = 0, 1. We seek for Φj
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where Xj
mk is a two-component constant vector. To find Xj

mk we write the conditions
(2) in the tangent and normal components. In the obtained equality we put the (5) and
(6), and using expansion in Fourier series, we pass to the boundary, when r → R. We
obtain systems of linear algebraic equations with respect to unknown Xj

mk, for j = 0
and j = 1 separately:

4∑
p=1

aj
kpX

j
mp = bj

mk, k = 1, 2, 3, 4; m = 0, 1, ..., (7)

where aj
kp and bj

mk are the known two-component vectors, depended on the elastic
constant and on the radius R. The determinant of the system (7) does not equal to
zero due two the uniqueness of the problem set. Putting values of Xj

mk obtained from
the systems (7) in the (6) and (5) we get the uj, regular solutions of the said problem
in the form of the infinite series.

As it is well known the properties of these series and off their first derivatives
(including the boundary), guarantee to find the functions given on the boundary to
satisfy the following conditions: f ∈ C3(S), F ∈ C2(S).
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