Seminar of I. Vekua Institute
of Applied Mathematics
REPORTS, Vol. 34, 2008

ON ONE TWO DIMENSIONAL PROBLEM OF STATICS IN THE THEORY OF ELASTIC MIXTURES WITH A PARTIALLY UNKNOWN BOUNDARY

Svanadze K.

A. Tsereteli Kutaisi State University

Abstract

In the present paper we investigate the second two dimensional boundary value problem of statics in the theory of elastic mixtures with a partially unknown boundary for an infinite isotropic elastic plate.

Using the methods of the theory of elastic functions are defined a stressed state of the plate.

Keywords and phrases: Elastic mixture, partially unknown boundary.
AMS subject classification (2000): 30E25; 74G70.
$\mathbf{1}^{\mathbf{0}}$. The homogeneous equation of statics of the theory of elastic mixture in the complex form is written as [2]

$$
\begin{equation*}
\frac{\partial^{2} U}{\partial z \partial \bar{z}}+K \frac{\partial^{2} \bar{U}}{\partial \bar{z}^{2}}=0, \quad U=\left(u_{1}+i u_{2}, u_{3}+i u_{4}\right)^{T} \tag{1}
\end{equation*}
$$

where $u^{\prime}=\left(u_{1}, u_{2}\right)^{T}$ and $u^{\prime \prime}=\left(u_{3}, u_{4}\right)^{T}$ are partial displacements,

$$
K=-\frac{1}{2} e m^{-1}, \quad e=\left[\begin{array}{cc}
e_{4} & e_{5} \\
e_{5} & e_{6}
\end{array}\right], \quad m^{-1}=\left[\begin{array}{cc}
m_{1} & m_{2} \\
m_{2} & m_{3}
\end{array}\right]^{-1}, \quad z=x_{1}+i x_{2}
$$

$m_{k}, e_{3+k}, k=1,2,3$, are expressed in terms of the elastic constants [2].
In [2] M. Basheleishvili obtained the representations:

$$
\begin{gather*}
U=\left(u_{1}+i u_{2}, u_{3}+i u_{4}\right)^{T}=m \varphi(z)+\frac{1}{2} e z \overline{\varphi^{\prime}(z)}+\overline{\psi(z)} \tag{2}\\
T U=\binom{(T u)_{2}-i(T u)_{1}}{(T u)_{4}-i(T u)_{3}}=\frac{\partial}{\partial s(x)}\left[(A-2 E) \varphi(z)+B z \overline{\varphi^{\prime}(z)}+2 \mu \overline{\psi(z)}\right] \tag{3}
\end{gather*}
$$

where $\varphi(z)=\left(\varphi_{1}, \varphi_{2}\right)^{T}$ and $\psi(z)=\left(\psi_{1}, \psi_{2}\right)^{T}$ are arbitrary analytic vector-functions, $\frac{\partial}{\partial s(x)}=n_{1} \frac{\partial}{\partial x_{2}}-n_{2} \frac{\partial}{\partial x_{1}}, n=\left(n_{1}, n_{2}\right)^{T}$ is an arbitrary unit vector,

$$
A=2 \mu m, \quad B=\mu e, \quad \mu\left[\begin{array}{ll}
\mu_{1} & \mu_{3} \\
\mu_{3} & \mu_{2}
\end{array}\right], \quad E=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],
$$

$\mu_{k}, k=1,2,3$, are elastic constants [2]; $(T u)_{p}, p=\overline{1,4}$, are the components of stresses,

$$
\begin{gathered}
(T u)_{1}=r_{11}^{\prime} n_{1}+r_{21}^{\prime} n_{2}=\left(a \theta^{\prime}+c_{0} \theta^{\prime \prime}\right) n_{1}-\left(a_{1} \omega^{\prime}+c w^{\prime \prime}\right) n_{2}-2 \frac{\partial}{\partial s(x)}\left(\mu_{1} u_{2}+\mu_{3} u_{4}\right) \\
(T u)_{2}=r_{12}^{\prime} n_{1}+r_{22}^{\prime} n_{2}=\left(a \theta^{\prime}+c_{0} \theta^{\prime \prime}\right) n_{2}+\left(a_{1} \omega^{\prime}+c w^{\prime \prime}\right) n_{1}+2 \frac{\partial}{\partial s(x)}\left(\mu_{1} u_{1}+\mu_{3} u_{3}\right) \\
(T u)_{3}=r_{11}^{\prime \prime} n_{1}+r_{21}^{\prime \prime} n_{2}=\left(c_{0} \theta^{\prime}+b \theta^{\prime \prime}\right) n_{1}-\left(c \omega^{\prime}+a_{2} w^{\prime \prime}\right) n_{2}-2 \frac{\partial}{\partial s(x)}\left(\mu_{3} u_{2}+\mu_{2} u_{4}\right) \\
(T u)_{4}=r_{12}^{\prime \prime} n_{1}+r_{22}^{\prime \prime} n_{2}=\left(c_{0} \theta^{\prime}+b \theta^{\prime \prime}\right) n_{2}+\left(c \omega^{\prime}+a_{2} w^{\prime \prime}\right) n_{1}+2 \frac{\partial}{\partial s(x)}\left(\mu_{3} u_{1}+\mu_{2} u_{3}\right) \\
\theta^{\prime}=\operatorname{div} u^{\prime}, \quad \theta^{\prime \prime}=\operatorname{div} u^{\prime \prime}, \quad \omega^{\prime}=\operatorname{rot} u^{\prime} \quad \omega^{\prime \prime}=\operatorname{rot} u^{\prime \prime}
\end{gathered}
$$

$a_{1}, a_{2}, c, a=a_{1}+b_{1}, b=a_{2}+b_{2}, c_{0}=c+d, b_{1}, b_{2}$ and d are elastic constants [2].
Let us now consider the vectors:

$$
\begin{gather*}
\stackrel{(1)}{\tau}=\left(r_{11}^{\prime}, r_{11}^{\prime \prime}\right)^{T}, \quad \stackrel{(2)}{\tau}=\left(r_{22}^{\prime}, r_{22}^{\prime \prime}\right)^{T}, \quad \tau=\tau^{(1)}+\tau^{(2)}, \tag{4}\\
\stackrel{(1)}{\eta}=\left(r_{21}^{\prime}, r_{21}^{\prime \prime}\right)^{T}, \quad \stackrel{(2)}{\eta}=\left(r_{12}^{\prime}, r_{12}^{\prime \prime}\right)^{T}, \quad \eta=\stackrel{(1)}{\eta}+\stackrel{(2)}{\eta}, \quad \varepsilon^{*}=\stackrel{(1)}{\eta}-\stackrel{(2)}{\eta}, \tag{5}\\
\sigma_{n}=\binom{(T u)_{1} n_{1}+(T u)_{2} n_{2}}{(T u)_{3} n_{1}+(T u)_{4} n_{2}}=\stackrel{(1)}{\tau} \cos ^{2} \alpha+\stackrel{(2)}{\tau} \sin ^{2} \alpha+\eta \sin \alpha \cos \alpha, \tag{6}\\
\sigma_{s}=\binom{(T u)_{2} n_{1}-(T u)_{1} n_{2}}{(T u)_{4} n_{1}-(T u)_{3} n_{2}}=\frac{1}{2}(\stackrel{(2)}{\tau}-\stackrel{(1)}{\tau}) \sin 2 \alpha+\frac{1}{2} \eta \cos 2 \alpha-\frac{1}{2} \varepsilon^{*}, \tag{7}\\
\sigma_{t}=\binom{\left[r_{21}^{\prime} n_{1}-r_{11}^{\prime} n_{2}, r_{22}^{\prime} n_{1}-r_{12}^{\prime} n_{2}\right]^{T} S}{\left[r_{21}^{\prime \prime} n_{1}-r_{11}^{\prime \prime} n_{2}, r_{22}^{\prime \prime} n_{1}-r_{12}^{\prime \prime} n_{2}\right]^{T} S} \\
=\stackrel{(1)}{\tau} \sin ^{2} \alpha+\stackrel{(2)}{\tau} \cos ^{2} \alpha-\eta \sin \alpha \cos \alpha . \tag{8}
\end{gather*}
$$

Here $n=\left(n_{1}, n_{2}\right)^{T}=(\cos \alpha, \sin \alpha)^{T}, S=\left(-n_{2}, n_{1}\right)^{T}=(-\sin \alpha, \cos \alpha)^{T}$ and $\alpha(t)$ is angle between the outer normal to the contour L of the point t and $o x_{1}$ axis.

After lengthy but elementary calculation we obtain:

$$
\begin{gather*}
\sigma_{n}+\sigma_{t}=\tau=2(2 E-A-B) \operatorname{Re} \varphi^{\prime}(t), \quad \varepsilon^{*}=2(A-B-2 E) \operatorname{Im} \varphi^{\prime}(t), \tag{9}\\
\quad \stackrel{(1)}{\tau}-\stackrel{(2)}{\tau}-i \eta=2\left[B \bar{t} \varphi^{\prime \prime}(t)+2 \mu \psi^{\prime \prime}(t)\right] \tag{10}\\
\sigma_{n}-i \sigma_{s}=(2 E-R) \overline{\varphi^{\prime}(t)}-B \varphi^{\prime}(t)+\left(B \bar{t} \varphi^{\prime \prime}(t)+2 \mu \psi^{\prime}(t)\right) e^{2 i \alpha}, \tag{11}\\
{\left[(A-2 E) \varphi(t)+B t \overline{\varphi^{\prime}(t)}+2 \mu \overline{\psi(t)}\right]_{L}=-i \int_{L} e^{i \alpha}\left(\sigma_{n}+i \sigma_{s}\right) d s,} \tag{12}\\
\sigma_{n}+2 \mu\left(\frac{\partial U_{s}}{\partial s}+\frac{U_{n}}{\rho_{0}}\right)+i\left[\sigma_{s}-2 \mu\left(\frac{\partial U_{n}}{\partial s}-\frac{U_{s}}{\rho_{0}}\right)\right]=2 \varphi^{\prime}(t), \tag{13}
\end{gather*}
$$

where ρ_{0}^{-1} is the curvature of the contour L at the point t;

$$
\begin{equation*}
U_{n}=\binom{u_{1} n_{1}+u_{2} n_{2}}{u_{3} n_{1}+u_{4} n_{2}}, \quad U_{s}=\binom{u_{2} n_{1}-u_{1} n_{2}}{u_{4} n_{1}-u_{3} n_{2}} \tag{14}
\end{equation*}
$$

$2^{\mathbf{0}}$. Let us consider the stressed state of an infinite isotropic elastic plate denoted by D. Suppose that the plate is weakened by holes of equal size which are located
periodically with period 2π on the $o x_{1}$-axis which at the same time is the axis of symmetry. The boundary of each hole consists of rectilinear segments L_{1} lying on straight lines $x_{2}= \pm b^{0}$ and of unknown smooth contours L_{2}. We assumed that the angle size at angular points of the boundary does not exceed $\pi / 2$. Suppose that on the plate at infinity there takes place one-sided, contracting, constant stress parallel to the $o x_{2}$-axis, and rotation is absent, i. e.

$$
\begin{equation*}
\stackrel{(1)}{\tau} \infty=0, \quad \stackrel{(2)}{\tau}_{\infty}=q, \quad \stackrel{(1)}{\eta} \infty_{\eta}+\stackrel{(2)}{\eta} \infty=0 . \tag{15}
\end{equation*}
$$

Also suppose that

$$
\begin{gather*}
U_{n}=U_{0}=\text { const, } \sigma_{s}=0 \quad \text { on } L_{1}, \tag{16}\\
\sigma_{n}=\sigma_{s}=0, \quad \sigma_{t}=K^{0}=\mathrm{const} \text { on } L_{2} . \tag{17}
\end{gather*}
$$

The problem is stated as follows [4]: Find a stressed state of the body and an unknown contour L_{2} such that the vector σ_{t} takes constant value on L_{2}.

By virtue of formulas (3), (9), (12) and (13) the boundary conditions (16)

$$
\begin{gather*}
\operatorname{Im}\left[(A-2 E) \varphi(t)+B t \overline{\varphi^{\prime}(t)}+2 \mu \overline{\psi(t)}\right]=0, \quad \operatorname{Im} \varphi^{\prime}(t)=0 \quad \text { on } \quad L_{1}, \tag{18}\\
\operatorname{Re} \varphi^{\prime}(t)=\frac{1}{2}(2 E-A-B)^{-1} K^{0}, \tag{19}\\
(A-2 E) \varphi(t)+B t \overline{\varphi^{\prime}(t)}+2 \mu \overline{\psi(t)}=B^{0} \quad \text { on } L_{2},
\end{gather*}
$$

where $\varphi(z)$ and $\psi(z)$ satisfy the definite conditions [4], K^{0} and B^{0} are constants which will be defined during solving the problem.

It is proved that

$$
\begin{gather*}
\varphi(z)=\frac{1}{2}(2 E-A-B)^{-1} q z, \quad K^{0}=q \\
\psi(z)=H z+O\left(z^{-1}\right), \quad H=-\frac{1}{4} \mu^{-1} q, \quad z \in D . \tag{20}
\end{gather*}
$$

On the basis of the $(20)_{1}$, conditions (18) ${ }_{1}$ and $(19)_{2}$ take the form

$$
\begin{equation*}
\operatorname{Im}(H t+\overline{\psi(t)})=0 \quad \text { on } \quad L_{1} ; \quad H t+\overline{\psi(t)}=\frac{1}{4} \mu^{-1} B^{0}=B^{*}, \quad \text { on } \quad L_{2} . \tag{21}
\end{equation*}
$$

Note that if $t \in L_{1}$ then [1] $\operatorname{Re} e^{-i \alpha(t)} t=\operatorname{Re} e^{-i \alpha(t)} A_{k}$, where A_{k} are the affixes of angular points $L=L_{1}+L_{2}, \alpha(t)= \pm \frac{\pi}{2}$.

As is mentioned above, we consider the periodic problem. Therefore it is sufficient to investigate the problem for the strip $\left|x_{1}\right| \leq h,-\infty<x_{2}<\infty$. Using the conformal mapping $z=\frac{i h}{2 \pi} \ln \zeta^{0}$, we pass to the plane $\zeta^{0}=\xi_{1}^{0}+i \xi_{2}^{0}$, cut along the ray $\xi_{1}^{0} \geq 0$. In this case the straight lines $x_{1}= \pm h$ will be transformed respectively into the rays $\xi_{2}= \pm 0$ and the hole boundary $L=L_{1}+L_{2}$ into an unknown contour $\Gamma=\Gamma_{1}+\Gamma_{2}$.

From the conditions of the problem it follows that on the boundary $x_{1}= \pm h$ we have $\sigma_{n}=\sigma_{s}=0$, therefore the $\varphi\left(\frac{i h}{2 \pi} \ln \zeta^{0}\right)$ and $\psi\left(\frac{i h}{2 \pi} \ln \zeta^{0}\right)$ are continuously extendable along the ray $\xi_{1}^{0} \geq 0$.

Taking this fact into account, the domain considered in the plane ζ is, in fact, the infinite domain D^{0} with a hole whose boundary is $\Gamma=\Gamma_{1}+\Gamma_{2}$.

Let the function $\zeta^{0}=\omega(\zeta)$ map the unit circle in the plane ζ into the domain D^{0}. From formulas (21) we have

$$
\left.\begin{array}{c}
\operatorname{Im}\left(\frac{i h}{2 \pi} H \ln \omega(\sigma)+\overline{\psi\left(\frac{i h}{2 \pi} \ln \omega(\sigma)\right)}\right)=0, \quad \text { on } \quad l_{1}=\left(\frac{i h}{2 \pi} \ln \left(L_{1}\right)\right)^{-1} \\
\left.\frac{i h}{2 \pi} H \ln \omega(\sigma)+\psi\left(\frac{i h}{2 \pi} \ln \omega(\sigma)\right)\right)
\end{array}\right) B^{*}, \quad \text { on } \quad l_{2}=\left(\frac{i h}{2 \pi} \ln \left(L_{2}\right)\right)^{-1} .
$$

Besides the above conditions we obviously have $\operatorname{Re} \frac{h}{2 \pi} \ln \omega(\sigma)= \pm b^{0}$, on l_{1}.
Differentiating the above conditions with recpect to θ^{0} and taking into account the fact that $\frac{d \sigma}{d \theta^{0}}=\frac{d e^{i \theta^{0}}}{d \theta^{0}}=i e^{i \theta_{0}}=i \sigma$ we obtain

$$
\begin{gather*}
\operatorname{Im}\left(H \frac{\omega^{\prime}(\sigma)}{\omega(\sigma)} \sigma+\overline{\psi_{0}^{\prime}(\sigma)} \frac{1}{\sigma}\right)=0, \quad \operatorname{Im} \frac{\omega^{\prime}(\sigma)}{\omega(\sigma)} \sigma=0, \quad \text { on } \quad l_{1} \tag{22}\\
H \frac{\omega^{\prime}(\sigma)}{\omega(\sigma)} \sigma+\overline{\psi_{0}^{\prime}(\sigma)} \frac{1}{\sigma}=0, \quad \text { on } \quad l_{2}, \tag{23}
\end{gather*}
$$

where $\psi_{0}^{\prime}(\sigma)=\psi^{\prime}\left(\frac{i h}{2 \pi} \ln \omega(\sigma) \frac{\omega^{\prime}(\sigma)}{\omega(\sigma)}\right)$.
Let

$$
W(\zeta)=\left\{\begin{array}{lll}
i H \frac{\omega^{\prime}(\zeta)}{\omega(\zeta)} \zeta, & \text { for } & |\zeta|<1 \tag{24}\\
-i \psi_{0}^{\prime}\left(\frac{1}{\bar{\zeta}}\right) \\
\zeta & \text { for } & |\zeta|>1
\end{array}\right.
$$

By virtue of (23) the $W(\zeta)$ is analytic on the entire plane ζ cut along the arc l_{1} and owing to (22) we get $\operatorname{Re} W^{ \pm}(\sigma)=0$, on l_{1}.

Consequently, $W(\zeta)$ is the solution of the Dirichet problem for the plane ζ, cut along $\operatorname{arc} l_{1}$ and the solution is given by the formula [3]

$$
W(\zeta)=H(\gamma \zeta+\delta)\left(\prod_{k=1}^{4}\left(\zeta-a_{k}\right)\right)^{-\frac{1}{2}}, \quad a_{k}=\left(\frac{i h}{2 \pi} \ln \omega\left(a_{k}\right)\right)^{-1} .
$$

Having known the $W(\zeta)$, we can define the $\psi_{0}(\zeta)$ and $\omega(\zeta)$ by formula (24) and hence the stressed state of the body and the equation of the unknown part of the boundary L_{2}.

REFERENCES

1. Bantsuri R.D., Isakhanov R.S. Some inverse problems in elasticity theory, Trudy Tbiliss. Math. Inst. A. Razmadze (in Russian) 87 (1987), 3-15 .
2. Basheleishvili M., Svanadze K. A new method of solving the basic plane boundary value problems of statics of the elastic mixture theory, Georgian Math. I. 8, 3 (2001), 427-446.
3. Muskhelishvili N.I. Singular integral equations, Boundary problems of function theory and their application to mathematical physics. Dover Publications, Inc., New York, 1992. 447 pp; Russian original Nauka, Moscow, 1966.
4. Zhorzholiani G. On one inverse problem of the plane theory of elasticity, Proc. A. Razmadze Math. Inst. 130 (2002), 139-144.
