Seminar of I. Vekua Institute
of Applied Mathematics
REPORTS, Vol. 34, 2008

A MODIFIED THEORY $M \tau S R$

Rukhaia K.,* Tibua L., ${ }^{*}$ Chankvetadze G., ${ }^{*}$ Plisko V.**
*I. Vekua Institute of Applied Mathematics of Iv. Javakhishvili Tbilisi State University
** Moskow State university

Abstract

Modifications of the logic $\tau S R[1]$ are introduced allowing to define the notions of a definition, a proof, contracting proof, and a proof text. Namely the language of the logic $\tau S R$ is extended by adding some metasymbols and auxiliary symbols. The main purpose of the modified theory is a computer realization of the mathematical research.

Keywords and phrases: The modified theory, a proof, a contracting proof, a proof text, a special prescript sign combination, contracting symbols, a contracting form.

AMS subject classification (2000): 03B70, 68 T15.

1. Introduction

In [1] the notion of a contracted symbol is defined and main theorems on the properties of contracted forms and operations on them are proved. These results as well as the results stated in [2] imply that the types I-IV, II', and IV' of contracted symbols are rational in the following sense [2]:
"On the one hand, the system is so general that we can define almost every contracted symbol used in the classical mathematical theories. On the other hand, the system has so rich properties that we have guarantee of the freedom for operating with the contracted forms".

Thus it is desirable to use the types I-IV, II, and IV of contracted symbols in formal and nonformal mathematical theories. Note that the types III, IV, and IV' of contracted symbols represent a generalization of the types I, II, and II' respectively. The types III, IV, and IV' of contracted symbols are very complicated and it is difficult to use them in automated reasoning.

An advantage of the logic $\tau S R$ [1] is that its alphabet allows to use only the types I, II, and II' of a definition of contracted symbols for introducing all the operators introduced by the rational system.

We propose an artificial modification $M \tau S R$ of the logic $\tau S R$ supporting an implementation of mathematical problems by the computer.

2. The Language of the Theory $M \tau S R$

The language of the theory $M \tau S R$ contains the following symbols.

1) The basic symbols of the $\tau S R$ theory:

- logical connectives $\neg($ of the weight 1$), \vee, \leftrightarrow($ each of the weight 2$) ;$
- a logical operational symbol τ of the weight $(1,1)$;
- a substantive special substitution operator S of the weight (1,2);
- a relational special substitution operator R of the weight $(1,2)$ and with the logicality indicator 2;
- object letters $X_{0}, X_{1}, X_{2}, \ldots$;
- predicate symbols $=, \in($ each of the weight 2$)$;
- predicate letters $P_{0}^{n}, Q_{0}^{n}, P_{1}^{n}, Q_{1}^{n}, \ldots(n=0,1,2, \ldots)$;
- a functional symbol \supset of the weight 2 ;
- functional letters $f_{0}^{n}, g_{0}^{n}, f_{1}^{n}, g_{1}^{n}, \ldots(n=0,1,2, \ldots)$;
- the left and right brackets [,].

2) the symbols defined by the types I, II, and II' of definitions;
3) metasymbols

- metaconstants for the natural numbers $0,1,2, \ldots, 10, \ldots$;
- metavariables for the object letters $x, y, z, x_{1}, y_{1}, z_{1}, \ldots$;
- metavariables for the forms $\Phi, \Phi_{1}, \Phi_{2}, \ldots$;
- metavariables for the formulae $A, B, A_{1}, B_{1}, \ldots$;
- metavariables for the terms $T, U, T_{1}, U_{1}, \ldots$;

4) auxiliary symbols $\vdash, \dashv,[],, \Rightarrow$, and, or $\cong, /, M \tau S R, C, I, D,, \ldots$, .

A sign combination is a finite sequence of the symbols of the $M \tau S R$ theory. If a sign combination does not contain auxiliary symbols, then we call it a word; if a word contains only the basic symbols of the $\tau S R$ theory, then it is called a basic word. If a word contains at least one symbol from the group 2), then we call it a short word.

Words type τx is logical substantive operators with weight 1 of $M \tau S R$ theory, $S x$ and $R x$ type words are operators with weight 2 of the same theory, besides $S x$ is special substantial partial quantifier with binding indicator $2, R x$ operator is logicospecial relational partial quantifiers with binding and logical indicator 2 .

Formulas and terms of $M \tau S R$ theory are defined in the following way.

1) The object letters, the metavariables for the object letters and for the terms, and the metaconstants for the natural numbers are atomic terms (forms).
2) The metavariables for the formulas are atomic formulas (forms).
3) The metavariables for the forms are atomic forms.
4) If σ is an n-ary logico-special operator, then $\sigma A_{1} \ldots A_{n}\left(\sigma T_{1} \ldots T_{n}\right)$ is a form, namely either a formula or a term depending on whether the operator σ is relational or substantive.
5) If σ is an n-ary special substitution operator with the logicality indicator $\left(n_{1}, \ldots, n_{k}\right)$ and $\phi_{1}, \ldots, \phi_{n}$ is a sequence of the forms such that $\phi_{n_{1}}, \ldots, \phi_{n_{k}}$ is the maximal subsequence of formulas from $\phi_{1}, \ldots, \phi_{n}$, then $\sigma \phi_{1}, \ldots, \phi_{n}$ is a form, namely either a formula or a term depending on whether the operator σ is relational or substantive.
6) Only such words as arise from repeated applications of 1) - 5) are forms (terms and formulas) of $M \tau S R$ theory.

Some sign combination are called special prescript sign combination. They will be introduced as required. We begin with the following special prescript sign combination.

1) $M \tau S R\left|A_{1}, \ldots, A_{n}\right|$ is a special prescript sign combination of the theory $M \tau S R$; it is read "A theory obtained adding the axioms A_{1}, \ldots, A_{n} to $M \tau S R$ ".
2) $M \tau S R\left|A_{1}, \ldots, A_{n}\right|\left[\mathbf{B}_{1}, \ldots, \mathbf{B}_{\mathbf{n}}\right] \mathbf{A}$ is a special prescript sign combination of $M \tau S R$ theory; it is read "If B_{1}, \ldots, B_{n} are theorems of $M \tau S R\left|A_{1}, \ldots, A_{n}\right|$, then A is a theorem of the theory $M \tau S R\left|A_{1}, \ldots, A_{n}\right|$ ". A special prescript sign combinations of this kind is called an inference rule of $M \tau S R\left|A_{1}, \ldots, A_{n}\right|$, where the formulas B_{1}, \ldots, B_{n} are premises and and A is a conclusion.
3) $\phi \cong \phi_{1}$ is a special prescript sign combination of the theory $M \tau S R$; it is read "The forms ϕ and ϕ_{1} are congruent".
4) If E_{1} and E_{2} are special prescript sign combinations of the theory $M \tau S R$, then $E_{1} \Rightarrow E_{2}, E_{1}$ and E_{2}, E_{1} or E_{2} are special prescript sign combinations of the theory $M \tau S R$; they are read "If E_{1}, then E_{2} ", " E_{1} and $E_{2} ", " E_{1}$ or E_{2} " respectively.
5) $C 0, C 1, C 2, \ldots$ are special prescript sign combination of the theory $M \tau S R$; they are used for enumerating the inference rules.

3. The Definition of a Proof in the Theory $M \tau S R$

To complete the description of the theory $M \tau S R$ we define the notions of a proof and a proof text. This is done in the following way.

1. First we specify some formulas of the theory $M \tau S R$ as its explicit axioms; the object, predicate, and functional letters occurring into the explicit axioms are called bound constants.
2. Then some special prescript sign combinations of the type 2) above are specified as basic derivation rules of the theory $M \tau S R$.
3. Finally, some rules are specified as schemes of the theory $M \tau S R$.

Any formula obtained by applying some schemes of the theory $M \tau S R$ is called an implicit axiom of the theory $M \tau S R$.

A proof of the theory $M \tau S R$ is defined recursively.

1. Any sequence of explicit and implicit axioms of the theory $M \tau S R$ is a proof of the theory $M \tau S R$.
2. A sequence A_{1}, \ldots, A_{m} of the formulas of the theory $M \tau S R$ is a proof of the theory $M \tau S R$ if at least one of the following conditions is fulfilled for every formula A in this sequence:
a) there is a proof of the theory $M \tau S R$ containing A;
b) in the sequence mentioned above there exist formulas $A_{i_{1}}, \ldots, A_{i_{k}}\left(1 \leq i_{1}<\right.$ $\left.\cdots<i_{k} \leq m\right)$ preceding A such that $A_{i_{1}}, \ldots, A_{i_{k}}$ are the premises of some derivation
rule of the theory $M \tau S R$, while A is the conclusion of this derivation rule.
A theorem of the theory $M \tau S R$ is a formula occurring in some proof of the theory $M \tau S R$.

Sign combinations of the form $\vdash M \tau S R\left|A_{1}, \ldots, A_{m}\right|$ (read "the beginning of the proof of the theory $M \tau S R\left|A_{1}, \ldots, A_{m}\right|$ ") and $\dashv M \tau S R\left|A_{1}, \ldots, A_{m}\right|$ (read "the end of the proof of the theory $\left.M \tau S R\left|A_{1}, \ldots, A_{m}\right| "\right), m \geq 0$, are called opposite. In this case we call a sign combination $\vdash M \tau S R\left|A_{1}, \ldots, A_{m}\right|$ and $\dashv M \tau S R\left|A_{1}, \ldots, A_{m}\right|$ an opening and a closing sign combination respectively.

Let

$$
\begin{equation*}
D_{1}, \ldots, D_{n} \tag{1}
\end{equation*}
$$

be a sequence of closing and opening sign combinations.
We say that sequence 1 is normal if the following conditions are fulfilled:

1) D_{1} and D_{n} are opposite sign combinations, D_{1} being $\vdash M \tau S R$ and D_{n} being $\dashv M \tau S R$;
2) For each right sign combination D^{\prime} in the sequence (1) there exist left sign combinations $D^{\prime \prime}$ in (1) corresponding to D^{\prime} and vice versa. Also, between D^{\prime} and $D^{\prime \prime}$ there are only occurences of formulas and pairs of the corresponding sign combinations.

We say that a formula A in (1) is directly connected with a theory

$$
M \tau S R\left|A_{1}, \ldots, A_{m}\right|
$$

in (1) if $M \tau S R\left|A_{1}, \ldots, A_{m}\right|$ precedes A in (1) and between $M \tau S R\left|A_{1}, \ldots, A_{m}\right|$ and A only formulas and pairs of the corresponding sign combinations may occur. It is obvious that for each formula A of a normal sequence there exists a unique right sign combination in this sequence with which A is connected.

Consider a subsequence

$$
\begin{equation*}
D_{1}, \ldots, D_{i}(i=2, \ldots, m) \tag{2}
\end{equation*}
$$

of the sequence (1), where D_{i} is a formula A. Remove from (2) first all the terms occurring between the pairs of the corresponding sign combinations and then all the terms which are not formulas. We say that the remainder of the sequence of (1) is connected with A. A normal sequence D_{1}, \ldots, D_{n} is called a conclusive text of the theory $M \tau S R$ if for each formula A in (1) connected with $M \tau S R\left|A_{1}, \ldots, A_{m}\right|$ in (1) the following condition is fulfilled: a subsequence of the sequence (1) connected with A is a proof of the theory $M \tau S R\left|A_{1}, \ldots, A_{m}\right|$.

The character combination $A \ldots(A . C m, A I m, A I D m)$ read as $" A$ is a theorem (according to the conditions, $C m, I m, I D m$ respectively)". In these cases, we say that a formula A is given with a commentary. We say that a given conclusive text of the theory $M \tau S R$ is a conclusive text with a commentary if this text contains formulas with a commentary.

The inference rules of the theory $M \tau S R$ are the following:
ra. if A and $\neg A \vee B$, then B;
rb. if A and $B \leftrightarrow A$, then B;
rc. if $A \leftrightarrow B$, then $B \leftrightarrow A$;
rd. if A and $B \cong A$, then B;
re. if $M \tau S R|A| B$, then $M \tau S R A \rightarrow B$.
The axiom schemes of the theory $M \tau S R$ are the following:
I1. $\neg[A \vee A] \vee A$
I2. $\neg A \vee[A \vee B]$
I3. $[A \vee B] \rightarrow[B \vee A]$
I4. $[A \rightarrow B] \rightarrow\left[\left[A_{1} \vee A\right] \rightarrow\left[A_{1} \vee B\right]\right]$
I5. $[A \leftrightarrow B] \rightarrow[A \rightarrow B]$
16. $R x T A \rightarrow \exists x A$

I7. $R x T A \leftrightarrow(T / x) A$
I8. $S x T U=(T / x) U$
Note that in the axiom shemas I7 and I8 the substitution (T / x) does not bind free variables in T.
19. $\forall x[A \leftrightarrow B] \rightarrow[\tau x A=\tau x B]$

I10. $\forall \forall x[A \leftrightarrow B] \wedge[T=U]] \rightarrow[R x T A \leftrightarrow R x U B]$
I11. $\left.[T=U] \wedge\left[T_{1}=U_{1}\right]\right] \rightarrow\left[S x T_{1} T=S x U_{1} U\right]$
Finally, assume that $\Phi-\Phi_{1}$ is a definition $D_{m}(m=1,2, \ldots)$, then $\Phi \leftrightarrow \Phi_{1}$ ($\Phi=\Phi_{1}$) is an axiom shema if Φ is a formula (respectively, if Φ is a term). This axiom shema is denoted by $I D m$.

Examples of the $D m[k, j]$ definition (where m is an index of the definition, k denotes the type of the definition, and j denotes the level of the operator obtained by the definition) and the axiom shema $\mathrm{I} D m$ are following.
$D 1[1,1] . A \rightarrow B---\neg A \vee B$ (read "If A, then B ");
$\mathrm{I} D 1 .[A \rightarrow B] \leftrightarrow[\neg A \vee B]$.
$D 2[1,1] . A \bigwedge B---\neg[\neg A \vee \neg B](\mathrm{read} " A$ and B ";
ID2. $[A \wedge B \leftrightarrow \neg[\neg A \vee \neg B]$.
$D 3[1,1] . \exists x A---R x \tau x A A$ (read "There exists x such that $A " ; \exists x$ is a logical relational operator;

ID3. $\exists x A \leftrightarrow R x \tau x A A$.
$D 4[1,2] . \forall x A---\neg \exists x \neg A$ (read "For all x, A "; $\forall x$ is a logical relational operator;
ID4. $\forall x A \leftrightarrow \neg \exists x \neg A$.
$D 5\left[2^{\prime}, 3\right] .<$ set $>x A---\tau y[\forall x[x \in y \leftrightarrow A]]$, where the variable y is different from x and does not occur in A (read " A is the set of objects possessing the property $A ") ;<$ set $>x$ is a logical substantive operator;
$\mathrm{I} D 5 .<$ set $>x A=\tau y[\forall x[x \in y \leftrightarrow A]]$.
$D 6\left[2^{\prime}, 1\right] .<$ represent $>x U T---\exists y[U=S x y T]$, where the variable y is different from x and does not occurin the terms T and U (read " U can be represented as T with respect to the $x ") ;<$ represent $>x$ is a special relational partial quantifier with the binding indicator (2);

ID6. < represent $>x U T \leftrightarrow \exists y[U=S x y T]$.
$D 7\left[2^{\prime}, 3\right] .<$ subset $>x T A---\tau y[\forall x[x \in y \leftrightarrow[x \in T \bigwedge A]]]$, where x and y are distinct variables, x does not occur in T and y does not occur in T and A (read "The set of all the elements of T with the property $A ") ;<$ subset $>x$ is a logico-special substantial partial quantifier with the logical and binding indicator (2);

ID7. < subset $>x T A=\tau y[\forall x[x \in y \leftrightarrow[x \in T \bigwedge A]]]$.
$D 8\left[2^{\prime}, 4\right] .<$ complement $>U T---<$ set $>x[x \in T \bigwedge x \in U]$, where the variable x does not occur in the terms T and U (read "The complements of the set U with respect to the set T "); <complement $>$ is a special substantive operator;

ID8. < complement $>U T=<$ set $>x[x \in T \bigwedge x \in U]$.
$D 9[1,1]$. < root $>x T A---R x T A]$ (read " T is a solution of the formula A with respect to x "); $<$ root $>x$ is a logico-special relational partial quantifier with the logical and binding indicator (2);
$\operatorname{ID9[1,1].}<$ root $>x T A \leftrightarrow R x T A]$.
According to the inference rules and axioms we prove analogies of deductive criteria given in the monography [3]. For examples, prove the criteria C1 - C15.

C1. $M \tau S R[A, \neg A \vee B] B$

$$
\vdash M \tau S R, A . ., \neg A \vee B . ., B ., r a, \dashv M \tau S R
$$

C2. $M \tau S R[A, B \leftrightarrow A] B$

$$
\vdash M \tau S R A . ., B \leftrightarrow A, B . r b, \dashv M \tau S R
$$

C3. $M \tau S R[A \leftrightarrow B] B \leftrightarrow A$

$$
\vdash M \tau S R, A \leftrightarrow B . ., B \leftrightarrow A . r c, \dashv M \tau S R
$$

C4. $M \tau S R[A, A \leftrightarrow B] B$

$$
\vdash M \tau S R A . ., A \leftrightarrow B . ., \quad B \leftrightarrow A . \quad C 3, B . C 2 ., \dashv M \tau S R
$$

C5. $M \tau S R[A, A \rightarrow B] B$

$$
\begin{aligned}
\vdash M \tau S R, & A . ., A \rightarrow B . .,[A \rightarrow B] \leftrightarrow[\neg A \vee B] . I D 1, \\
& \neg A \vee B . \quad C 4, B . C 1, \dashv M \tau S R
\end{aligned}
$$

C6. $M \tau S R A \rightarrow[A \vee B]$

$$
\begin{gathered}
\vdash M \tau S R, \neg A \vee[A \vee B] . I 2,[A \rightarrow[A \vee B]] \leftrightarrow[\neg A \vee[A \vee B]] . I D 1, \\
A \rightarrow[A \vee B] . C 2, \dashv M \tau S R
\end{gathered}
$$

C7. $M \tau S R\left[A \rightarrow B, B \rightarrow A_{1}\right] A \rightarrow A_{1}$
$\vdash M \tau S R, B \rightarrow A_{1} . . \quad\left[B \rightarrow A_{1}\right] \rightarrow\left[[\neg A \vee B] \rightarrow\left[\neg A \vee A_{1}\right]\right] . I 4$,
$[\neg A \vee B] \rightarrow\left[\neg A \vee A_{1}\right] . C 5, A \rightarrow B . .,[A \rightarrow B] \leftrightarrow[\neg A \vee B] . I D 1, \neg A \vee B . C 4$,
$\neg A \vee A_{1} . C 5,\left[A \rightarrow A_{1}\right] \leftrightarrow\left[\neg A \vee A_{1}\right] . I D 1, A \rightarrow A_{1} . C 2, \dashv M \tau S R$

C8. $M \tau S R A \rightarrow A$.
$\vdash M \tau S R, A \rightarrow[A \vee A] . C 6, \neg[A \vee A] \vee A . I 1,[[A \vee A] \rightarrow A] \leftrightarrow[\neg[A \vee A] \vee A] . I D 1$,

$$
[A \vee A] \rightarrow A . C 2, A \rightarrow A . C 7, \dashv M \tau S R
$$

C9. $M \tau S R A \rightarrow[B \vee A]$
$\vdash M \tau S R, A \rightarrow[A \vee B] . C 6,[A \vee B] \rightarrow[B \vee A] . I 3, A \rightarrow[B \vee A] . C 7, \dashv M \tau S R$

C10. $M \tau S R[B] A \rightarrow B$

$$
\begin{aligned}
& \vdash M \tau S R, B \rightarrow[\neg A \vee B] . C 9, B . ., \neg A \vee B . C 5, \\
& A \rightarrow B \leftrightarrow[\neg A \vee B] . I D 1, A \rightarrow B . C 2, \dashv M \tau S R
\end{aligned}
$$

C11. $M \tau S R A \vee \neg A$

$$
\begin{gathered}
\vdash M \tau S R, A \rightarrow A . C 8,[A \rightarrow A] \leftrightarrow[\neg A \vee A] . I D 1, \neg A \vee A . C 2, \\
{[\neg A \vee A] \rightarrow[A \vee \neg A] . I 3, A \vee \neg A . C 5, \dashv M \tau S R}
\end{gathered}
$$

C12. $M \tau S R A \rightarrow \neg \neg A$

$$
\begin{gathered}
\vdash M \tau S R, \neg A \vee \neg \neg A . C 11,[A \rightarrow \neg \neg A] \leftrightarrow[\neg A \vee \neg \neg A] . I D 1, \\
A \rightarrow \neg \neg A . C 2, \dashv M \tau S R
\end{gathered}
$$

C13. $M \tau S R[A \rightarrow B] \rightarrow[\neg B \rightarrow \neg A]$

$$
\begin{aligned}
& \vdash M \tau S R, B \rightarrow \neg \neg B . C 11,[B \rightarrow \neg \neg B] \rightarrow[[\neg A \vee B] \rightarrow[\neg A \vee \neg \neg B]] . I 4, \\
& {[\neg A \vee B] \rightarrow } {[\neg A \vee \neg \neg B] . \quad C 5,[\neg A \vee \neg \neg B] \rightarrow[\neg \neg B \vee \neg A] . I 3, } \\
& {[\neg A \vee B] \rightarrow } {[\neg \neg B \vee \neg A] . \quad C 7,[\neg A \vee B] \rightarrow[\neg \neg B \vee \neg A] . C 7, } \\
& {[A \rightarrow B] \leftrightarrow[\neg A \vee B] . I D 1,[A \rightarrow B] \rightarrow[\neg A \vee B] . I 5, } \\
& {[A \rightarrow B] \rightarrow } {[\neg \neg B \vee \neg A] . C 7,[\neg B \rightarrow \neg A] \leftrightarrow[\neg \neg B \vee \neg A] . I D 1, } \\
& {[\neg \neg B \vee \neg A] \leftrightarrow[\neg B \rightarrow \neg A] . r c,[\neg \neg B \vee \neg A] \rightarrow[\neg B \rightarrow \neg A] . I 5, } \\
& {[A \rightarrow B] \rightarrow[\neg B \rightarrow \neg A] . C 7, \dashv M \tau S R }
\end{aligned}
$$

C14. $M \tau S R[A \rightarrow B]\left[B \rightarrow A_{1}\right] \rightarrow\left[A \rightarrow A_{1}\right]$

$$
\begin{aligned}
\vdash M \tau S R, & A \rightarrow B . .,[A \rightarrow B] \rightarrow[\neg B \rightarrow \neg A] . C 13, \\
\neg B \rightarrow \neg A . C 5, & {[\neg B \rightarrow \neg A] \rightarrow\left[\left[A_{1} \vee \neg B\right] \rightarrow\left[A_{1} \vee \neg A\right]\right] . I 4, } \\
{\left[A_{1} \vee \neg B\right] \rightarrow } & {\left[A_{1} \vee \neg A\right] . C 5,\left[A_{1} \vee \neg A\right] \leftrightarrow\left[\neg A \vee A_{1}\right] . I 3, } \\
{\left[\left[A_{1} \vee \neg A\right] \leftrightarrow\right.} & {\left.\left[\neg A \vee A_{1}\right]\right] \rightarrow\left[\left[A_{1} \vee \neg A\right] \rightarrow\left[\neg A \vee A_{1}\right] . I 5,\right.} \\
{\left[A_{1} \vee \neg A\right] \rightarrow } & {\left[\neg A \vee A_{1}\right] . C 5,\left[A_{1} \vee \neg B\right] \rightarrow\left[\neg A \vee A_{1}\right] . C 7, } \\
& {\left[\neg B \vee A_{1}\right] \leftrightarrow\left[A_{1} \vee \neg B\right] . I 3, } \\
{\left[\left[\neg B \vee A_{1}\right] \leftrightarrow\right.} & {\left.\left[A_{1} \vee \neg B\right]\right] \rightarrow\left[\left[\neg B \vee A_{1}\right] \rightarrow\left[A_{1} \vee \neg B\right] . I 5,\right.} \\
& {\left[\neg B \vee A_{1}\right] \rightarrow\left[A_{1} \vee \neg B\right] . C 5, } \\
& {\left[\neg B \vee A_{1}\right] \rightarrow\left[\neg A \vee A_{1}\right] . C 7, } \\
& {\left[B \rightarrow A_{1}\right] \leftrightarrow\left[\neg B \vee A_{1}\right] . I D 1, } \\
{\left[\left[B \rightarrow A_{1}\right] \leftrightarrow\right.} & {\left.\left[\neg B \vee A_{1}\right]\right] \rightarrow\left[\left[B \rightarrow A_{1}\right] \rightarrow\left[\neg B \vee A_{1}\right]\right] . I 5, } \\
& {\left[B \rightarrow A_{1}\right] \rightarrow\left[\neg B \vee A_{1}\right] . C 5, } \\
& {\left[B \rightarrow A_{1}\right] \rightarrow\left[\neg A \vee A_{1}\right] . C 7, } \\
& {\left[A \rightarrow A_{1}\right] \leftrightarrow\left[\neg A \vee A_{1}\right] . I D 1, } \\
& {\left[\neg A \vee A_{1}\right] \leftrightarrow\left[A \rightarrow A_{1}\right] . I 3, } \\
{\left[\left[\neg A \vee A_{1}\right] \leftrightarrow\right.} & {\left.\left[A \rightarrow A_{1}\right]\right] \rightarrow\left[\left[\neg A \vee A_{1}\right] \rightarrow\left[A \rightarrow A_{1}\right]\right] . I 5, } \\
{\left[\neg A \vee A_{1}\right] \rightarrow[A \rightarrow} & {\left[A_{1}\right] . C 5,\left[B \rightarrow A_{1}\right] \rightarrow\left[A \rightarrow A_{1}\right] . C 7, \dashv M \tau S R }
\end{aligned}
$$

C15. $[M \tau S R|\neg A| B$ and $M \tau S R|\neg A| \neg B] \Rightarrow M \tau S R A$

$$
\begin{aligned}
& \vdash M \tau S R, \vdash M \tau S R|\neg A|, B . . \neg B . ., \neg B \rightarrow[\neg B \vee A] . C 6, \neg B \vee A . C 5, \\
& {[B \rightarrow A] \leftrightarrow[\neg B \vee A] . \quad I D 1,[\neg B \vee A] \leftrightarrow[B \rightarrow A] . C 3,} \\
& {[[\neg B \vee A] \leftrightarrow[B \rightarrow A]] \rightarrow[[\neg B \vee A] \leftrightarrow[B \rightarrow A]] . I 5,[\neg B \vee A] \leftrightarrow[B \rightarrow A] . C 5,} \\
& B \rightarrow A . C 5, A . C 5, \\
& \dashv M \tau S R|\neg A|, \neg A \rightarrow A . r e,[\neg A \rightarrow A] \leftrightarrow[\neg \neg A \vee A] . I D 1, \\
& \neg \neg A \vee A . C 4,[\neg \neg A \vee A] \rightarrow[[A \vee \neg \neg A] \rightarrow[A \vee A] . I 4, \\
& {[A \vee \neg \neg A] \rightarrow[A \vee A] . C 5,[\neg \neg A \vee A] \rightarrow[A \vee \neg \neg A] . I 3,} \\
& A \vee \neg \neg A . C 5, e \neg[A \vee A] \vee A . I 1, \\
& {[[A \vee A] \rightarrow A] \leftrightarrow[\neg[A \vee A] \vee A] . I D 1,[A \vee A] \rightarrow A . C 2, A . C 5, \dashv M \tau S R}
\end{aligned}
$$

Acknowledgements. Partially supported by INTAS (grant 05-1000008-8144).

REFERENCES

1. Rukhaia Kh., Tibua L., Chankvetadze G. One Method of constructing a formal system, Applied Mathematics, Informatics and Mechanics 11, 2 (2006).
2. Pkhakadze Sh. Some problems of the notation theory, Tbilisi University Press, Tbilisi, 1977 (in Russian).
3. Bourbaki N. Les éléments des mathématiques, La théorie des ensembles, Hermann, Paris, 1966.
