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Abstract. In this paper the geometrically nonlinear and non-shallow shells are considered.
Here under non-shallow shells will be meant three-dimensional shell-type elastic bodies sat-
isfying the conditions |hbβ

α| ≤ q < 1 (α, β = 1, 2), in contrast to shallow shells, for which the
assumption hbβ

α
∼= 0 is accepted, where h is the semi-thickness, bβ

α are mixed components of
the curvature tensor of the shell’s midsurface S.

Using the method I. Vekua [1] and the method of a small parameter [2] two-dimensional
system of equations for the nonlinear and non-shallow shells is obtained [3]. For any approx-
imation of order N the complex representations of the general solutions are obtained.
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1. Making use of vector and tensor notations, the equilibrium equation of the 3-D
elastic bodies and stress-strain relations can be written as follows:

∇iσ
i + Φ = 0, σi = τ ij(Rj + ∂ju), τ ij = Eijpqepq

Eijpq = λgijgpq + µ(gipgjq + giqgjp) (Rj = ∂jR, gij = RiRj), (1)

epq =
1

2
(Rp∂qu + Rq∂pu + ∂pu∂qu), (i, j, p, q = 1, 2, 3)

where ∇i are covariant derivatives with respect to the space coordinates xi, σi are
covariant constituents of the stress tensor, Φ is vector of volume forces. τ ij and epq

are contravariant and covariant components of the stress and strain tensors, u is the
displacement vector, Ri and Ri are the covariant and contravariant basis vector of
space.

Basis vectors Ri (Ri) are expressed by formulas [1]:

Rα = (aβ
α − x3b

β
α)rβ, Rα = ϑ−1[(1− 2Hx3)a

β
α + x3b

β
α]rβ, (2)

R3 = R3 = n (aβ
α = rαr

β),

where rα (rα) and n are, respectively, the basis vectors and the normal of the midsurface
S, 2H = bα

α, K = b1
1b

2
2 − b1

2b
2
1, ϑ = 1− 2Hx3 + Kx2

3, (−h 6 x3 = x3 6 h).
The relation (1) can be written as [3]:

1√
a

∂
√

aϑσα

∂xα
+

∂ϑσ3

∂x3
+ ϑΦ = 0, (3)
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σi = Ai
i1
M i1j1p1q1 [Ap

p1
(rq1∂pu) + Aq

q1
(rp1∂qu) + Ap

p1
Aq

q1
∂pu∂qu](rj1 + Aj

j1
∂ju),

where a is the discriminant of metric tensor of the midsurface S,

M i1j1p1q1 = λai1j1ap1q1 + µ(ai1p1aj1q1 + ai1q1aj1p1), (4)

Aα
α1

= Rαrα1 , Aα
3 = Rαn = 0, aαβ = rαrβ, aα3 = a3α = rαn = 0, a33 = 1.

2. The two-dimensional finite system of equilibrium equations with respect to
component of displacement vector in the isometric coordinates has the complex form
[3]:

4µ∂z

(
Λ−1∂z

(m,n)
u+

)
+ 2(λ + µ)∂z

(m,n)

θ + 2λ∂z

(m,n)

u′3 −

(2m + 1)µ
[
2∂z

(
(m−1,n)

u3 +
(m−3,n)

u3 + · · ·
)

+
(m−1,n)

u′+ +
(m−3,n)

u′+ + · · ·
]

=
(m,n)

F+ ,

µ
(
∇2(m,n)

u3 +
(m,n)

θ′
)
− (2m + 1)

[
λ
((m−1,n)

θ +
(m−3,n)

θ + · · ·
)

(5)

+(λ + 2µ)
((m−1,n)

u′3 +
(m−3,n)

u′3 + · · ·
)]

=
(m,n)

F3

(
m = 0, 1, . . . , N ;

(k,n)
ui = 0, k > N,

(m,n)
u+ =

(m,n)
u1 + i

(m,n)
u2

)
,

where

(m)
ui =

2m + 1

2h

h∫

−h

uiPm

(
x3

h

)
dx3 =

∞∑
n=1

(m,n)
ui εn,

(m)

u′i = (2m + 1)(
(m+1)
ui +

(m+3)
ui + · · ·

)
,

(m,n)

θ = 2 Re
(
Λ−1∂z

(m,n)
u+

)
, z = x1 + ix2, 2∂z = ∂1 − i∂2,

∇2 = 4Λ−1∂2
z z , ds2 = Λ(z, z)dz dz,

Pm is the Legendre polynomial of degree m, the right-hand sides
(m)

F+ =
(m)

F1 + i
(m)

F2 and
(m)

F3 are expressed by means of previous approximations, i.e.,

(m)

F =
∞∑

n=1

(m,n)

F εn,
(m,n)

F = F (
(m,n−1)

u ,
(m,n−2)

u , ...).

Here ε = h
R

is small parameter, R is a certain characteristic radius of curvature of the
midsurface of shell [2].

Below the upper index will be omitted.
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The solution of the homogeneous system (5) we can find the form

(m)
u+ = ∂z

((m)

V1 + i
(m)

V2

)
+

( 1

π

∫∫

S

ϕ′(ζ)− æ1ϕ
′(ζ)dSζ

ζ − z
− ψ′(ζ)

)
δ0m

−
( 1

π

∫∫

S

Φ′(ζ) + Φ′(ζ)dSζ

ζ − z
+ η1Φ′′(z)− 2Ψ′(z)

)
δ1m + æ2ϕ′′(z)δ2m + η2Φ′′(z)δ3m,

(m)
u3 =

(m)

V3 −
( 1

π

∫∫

S

(Φ′(ζ) + Φ′(ζ))ln|ζ − z|dSζ −Ψ(z)−Ψ(z)
)
δ0m (6)

−3

2
æ2

[
(ϕ′(z) + ϕ′(z))δ1m + (Φ′(z) + Φ′(z))δ2m

]
,

(0)

V1 =
(0)

V2 = 0,
(0)
u3 = Ψ(z) + Ψ(z), if N = 0,

δij =

{
0, i 6= j,

1, i = j,
(dSζ = Λ(ζ, ζ)dζdζ, ζ = ξ + iη).

where ϕ′(z),ψ′(z),Φ′(z) and Ψ′(z) are holomorphic functions of z and express the bi-
harmonic solution of the system (5),

æ1 =





λ + 3µ

λ + µ
, N = 0,

5λ + 6µ

3λ + 2µ
, N 6= 0,

η1 =





λ + 2µ

µ
, N = 1,

4(λ + µ)

λ + 2µ
, N = 2,

23λ + 24µ

5(λ + 2µ)
, N = 3,

æ2 =
4λ

3(3λ + 2µ)
, η2 = −4(3λ + 4µ)

15(λ + 2µ)
.

Substituting expressions (6) in (5) we have

(λ + 2µ)∇2
(m)

V1 + 2λ
(m)

V ′
3 − (2m + 1)

[
2
((m−1)

V3 +
(m−3)

V3 + · · ·
)

+
(m−1)

V ′
1 +

(m−3)

V ′
1 + · · ·

]
= 0,

µ∇2
((m)

V3 +
1

2

(m)

V ′
1

)
− (2m + 1)

[
λ∇2

((m−1)

V1 + · · ·
)

+ (λ + 2µ)
((m−1)

V ′
3 + · · ·

)]
= 0, (7)

µ
[
∇2

(m)

V2 − (2m + 1)
((m−1)

V ′
2 +

(m−3)

V ′
2 + · · ·

)]
= 0,

((m)

V ′ = (2m + 1)
[(m+1)

V +
(m+3)

V + · · ·
])

(m = 0, 1, ..., N = 2k + 1).
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Using now the matrix notation for
(m)

Vi from (6) we obtain

∇2V + AV = 0, ∇2Ω + BΩ = 0, (8)

where V and Ω are culumn-matrices

V =
((2)

V1,
(3)

V1, ...,
(N)

V1 ,
(3)

V1,
(2)

V3, ...,
(N)

V3

)T
, Ω =

((1)

V2,
(2)

V2, ...,
(N)

V2

)T
,

A = {aij}2N−1
i,j=1 , B = {bij}N

i,j=1.

Let the numbers α1, α2, ..., α2N−1 and β1, β2, ..., βN be simple eigenvalues of matrices A

and B respectively, and As =
( (2)

As, ...,
(2N)

As

)T
, Bs =

( (1)

Bs, ...,
(N)

Bs

)T
their eigenvectors.

The general solutions of homogeneous matrix equations (6) have the form

V =
2N−1∑
s=1

Asws, Ω =
N∑

s=1

Bsωs (9)

where ws and ωs are arbitrary solutions of the following scalar equations

∇2ws + αsws = 0, ∇2ωs + βsωs = 0.

Hence

(m)

V1 =
2N−1∑
s=1

(m)

Asws (m = 2, 3, ..., N),

(m)

V2 =
N∑

s=1

(m)

Bsωs (m = 1, 2, ..., N),
(0)

V2 = 0, (10)

(m)

V3 =
N∑

s=1

(m+N)

As ws (m = 1, 2, ..., N).

Making use of equations (6) for m = 0 and m = 1 we obtain

(0)

V1 =
2λ

λ + 2µ

2N−1∑
s=1

1

αs

((N+1)

As +
(N+3)

As + · · ·+
(2N)

As

)
ws,

(0)

V2 = 0,

(0)

V3 = −1

2

2N−1∑
s=1

[ (3)

As + · · ·+
(N)

As +
3λ

λ + 2µ

1

αs

((N+2)

As + · · ·+
(2N−1)

As

)]
ws, (11)

(1)

V1 =
6λ

λ + 2µ

2N−1∑
s=1

1

αs

((N+2)

As + · · ·+
(2N−1)

As

)
ws.
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By substituting (9),(10) into (5) we obtain general representations for the compo-
nents of the displacement vector (N = 2k + 1)

(0)
u+ = ∂z

{
2λ

λ + 2µ

2N−1∑
s=1

1

αs

((N+1)

As + · · ·+
(2N)

As

)
ws

− 2

π

∫∫

S

(æ1ϕ
′(ζ)− ϕ′(ζ))ln|ζ − z|dSζ −Ψ(z)



 ,

(0)
u3 = −1

2

2N−1∑
s=1

[ (3)

As + · · ·+
(N)

As +
3λ

λ + 2µ

1

αs

((N+2)

As + · · ·+
(2N−1)

As

)]
ws

+2Re
[
Ψ(z)− 1

π

∫∫

S

Φ′(ζ)ln|ζ − z|dSζ

]
, (12)

(1)
u+ = ∂z

{
6λ

λ + 2µ

2N−1∑
s=1

1

αs

((N+2)

As + · · ·+
(2N−1)

As

)
+ i

N∑
s=1

(1)

Bsωs

+
2

π

∫∫

S

(Φ′(ζ) + Φ′(ζ))ln|ζ − z|dSζ − η1Φ′(z)− 2Ψ(z)



 ,

(m)
u+ = ∂z

{ 2N−1∑
s=1

(m)

Asws + i

N∑
s=1

(m)

Bsωs + æ2ϕ′′(z)δ2m + η2Φ′′(z)δ3m
}

,

(m)
u3 =

N∑
s=1

(m+N)

As ws − 3

2
æ2

[
(ϕ′(z) + ϕ′(z))δ1m + (Φ′(z) + Φ′(z))δ2m

]

(m = 1, 2, ..., N, N = 2k + 1).

Let us now express by Riemann functions the particular solutions
∧
V and

∧
Ω of the

matrix equations (8)

∇2
∧
V + A

∧
V = F, ∇2

∧
Ω + A

∧
Ω = L.

These solutions have the form

∧
V (z, z) =

1

u

z∫

z0

z∫

z0

Λ(t, t)R(z, z, t, t)F (t, t)dtdt, (13)

∧
Ω(z, z) =

1

u

z∫

z0

z∫

z0

Λ(t, t)r(z, z, t, t)L(t, t)dtdt,
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where R(z, z, t, t) and r(z, z, t, t) are Riemann functions:

R(z, z, t, t) = E − A

4

z∫

t

z∫

t

Λ(t1, t)dt1dt1

+
(A

4

)2
z∫

t

z∫

t

Λ(t1, t1)
( t1∫

t

t1∫

t

Λ(t2, t2)dt2dt2

)
dt1dt1 (14)

−
(A

4

)3
z∫

t

z∫

t

Λ(t1, t1)
[ t1∫

t

t1∫

t

Λ(t2, t2)
( t2∫

t

t2∫

t

Λ(t3, t3)dt3dt3

)
dt2dt2

]
dt1dt1 + · · ·

r(z, z, t, t) = E − B

4

z∫

t

z∫

t

Λ(t1, t)dt1dt1

+
(B

4

)2
z∫

t

z∫

t

Λ(t1, t1)
( t1∫

t

t1∫

t

Λ(t2, t2)dt2dt2

)
dt1dt1 (15)

−
(B

4

)3
z∫

t

z∫

t

Λ(t1, t1)
[ t1∫

t

t1∫

t

Λ(t2, t2)
( t2∫

t

t2∫

t

Λ(t3, t3)dt3dt3

)
dt2dt2

]
dt1dt1 + · · ·

Analogous formulas can be written for N = 2k.
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