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Abstract. In this paper the geometrically nonlinear and non-shallow shells are considered.
Here under non-shallow shells will be meant three-dimensional shell-type elastic bodies sat-
isfying the conditions |hb§| <q¢<1(a,0=1,2), in contrast to shallow shells, for which the
assumption hbfY = (0 is accepted, where h is the semi-thickness, bg are mixed components of
the curvature tensor of the shell’s midsurface S.

Using the method I. Vekua [1] and the method of a small parameter [2] two-dimensional
system of equations for the nonlinear and non-shallow shells is obtained [3]. For any approx-
imation of order N the complex representations of the general solutions are obtained.
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1. Making use of vector and tensor notations, the equilibrium equation of the 3-D
elastic bodies and stress-strain relations can be written as follows:

Vio' +® =0, o' =77(R;+0u), 77 =FE"e,

Eiqu _ )\gijgpq + Iu(gz’pgjq + giqgjp) (Rj — ajR’ gij — RZ'RJ')7 (1)
1

Cpg = §<Rp8qu+Rqapu+apuaqu)7 (i7j7pvq = 1a273)

where V; are covariant derivatives with respect to the space coordinates z°, o' are
covariant constituents of the stress tensor, ® is vector of volume forces. 79 and e,
are contravariant and covariant components of the stress and strain tensors, u is the
displacement vector, R; and R’ are the covariant and contravariant basis vector of
space.

Basis vectors R; (R') are expressed by formulas [1]:

)
R, = (ag — xgbg)rg, R® = 19_1[(1 — 2Hx3)a§ + xgbg]rﬂ, (2)
Rs; =R?=n (a’ =r,r’),

where r,, (r®) and n are, respectively, the basis vectors and the normal of the midsurface
S,2H =02, K =bjb3 —bib?, v =1—2Hux3+ Ka3, (—h < a3 =12° < h).
The relation (1) can be written as [3]:
1 0y/ado® N do?
Va Oz o3

+ 0P =0, (3)
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o' = Al MIPa[AP (r, dpu) + Al (1, 0u) + AL AL dud,ul(r;, + A’ O;u),
where a is the discriminant of metric tensor of the midsurface S,
Mupiar — )\ g1 gpia + Iu(ahplajuh + athajlpl)’ (4)

Ay, =Ry, A5 =R"n=0, a*? = rarﬁ, a®=a*=r"n=0, o =1.

2. The two-dimensional finite system of equilibrium equations with respect to
component of displacement vector in the isometric coordinates has the complex form

3]:

m7n) (m,n)

m,n (
100:(A70.50) + 20+ ) 0 +220- uy —

1,n) (m—3,n) (m— 1n) (m— 3n) (m,n)
(2m+1)p [2&( + uz - )+ u, + W +- }_ F, |
o(m,n) (m,n) m— 1n) (m— Sn)
(V uz + 0 > 2m+1[ +> (5)

(m—1,n) (m 3 n)

("
+(A+2ﬂ)( w, + )}

(k,

n—O k>N, u, = u; +1i us

<m20,1,...,N; (m;n) — (m,n) (mn)>7

where

h
m 2 1 > m,n
(uz-) = W;Z /uiPm (%) dxs = (ui )5”,

“n n=1

(m) +1 m+3
= Cm+ (" ),

(m,n)

§ —2Re (A—laz(’ﬁf)>, s =z tia?, 20, = 0y — idy,
V2 =4NT102, ) ds* = A(z,%)dz dz,

zZz )

m) (m)  (m)
P,, is the Legendre polynomial of degree m, the right-hand sides F'y = F; + i Fy and
(m)
F3 are expressed by means of previous approximations, i.e.,

>, (myn) (m,n) m,n—1) (m,n—2
=S Fe, B =r(Mu ).
n=1

Here € = % is small parameter, R is a certain characteristic radius of curvature of the
midsurface of shell [2].
Below the upper index will be omitted.
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The solution of the homogeneous system (5) we can find the form

Q)dS¢

=0V +i7) + // _W

_ %Z/ ‘1)/(02106154 + P (z) - 20'(2))

W=t (] (; [[ @+ Tinc - slasc -
S

if N=0,
(dS¢ =

where ¢'(2),1'(2),9'(z) and ¥'(z) are holomorphic
harmonic solution of the system (5),

(
ARy
A+ 3u N—o i
) A+ud ’ ) A+ _
ey = m=9 ~ 5 N=2,
S\ +6p N £0 A+ 2p0
3N+ 2 ’ 23\ + 24u N_3
( B(A+2p) ’
4\ 43N+ 4p)
2=y o T T
3(3X + 211) 15(X + 2p1)
Substituting expressions (6) in (5) we have
(m) (m) m—1)  (m—3) (m=1)  (m=3)
(A +20)V2 Vs + 20V — (2m + 1) 2 ( Vi + Vo 4]k V4w V4] =0,
(m) (m—1) (m-1)
w?(x@+ V/>—(2m+1)[AV2( Vi +~")+(>\+2u)( Vi +>] =0, (7)
(m-1)  (m-=3)
,LL[VZX/Q—(Qm—I—l)( R A |
(m) (m+1)  (m+3)
(Vi =@n+)[ V' + V +]) m=01,.N=2k+1)

- W) 5Om
O1m + 88290"( )02 + 772@"( )03m5

W(2) = 0() ) don (6)

]

A(¢. Q)d¢dC, ¢ = & +n).

functions of z and express the bi-
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(m
Using now the matrix notation for V; from (6) we obtain
VAV 4+ AV =0, V*Q+ BQ =0, (8)

where V and ) are culumn-matrices

26 ME e W L@ W g
V=WV, Vi, Vi, i, Vs, VB) T, Q= (Vo, Vo, o, Va)

A= {a;}; B = {b;}},

ij=1> ij=1°

Let the numbers aq, as, ..., asny_1 and Sy, (s, ..., By be simple eigenvalues of matrices A
) (2) 2N) 1 (1) N
and B respectively, and Ay = (AS, ey Ay ) , Bs = (Bs, e BS) their eigenvectors.
The general solutions of homogeneous matrix equations (6) have the form

2N—-1

N
V= Z Agwy, Q= Z Bws (9)
s=1 s=1

where wy and w, are arbitrary solutions of the following scalar equations

Viw, + a,w, = 0, Viws + fsws = 0.

Hence
(m) 2N l(m)
Vi = Z Agwg (m=2,3,...,N),
s=1
m N.om (0)
V, =) Buw (m=1,2,...N), V=0, (10)
s=1

N (m+N)

(m)
Vs = E As ws  (m=1,2,..,N).
s=1

Making use of equations (6) for m = 0 and m = 1 we obtain

(0) o) AWl vy (v+3) (2N) (0)

V, = _< AS AS As> . V:07
= Zl - + +o+ A Jw )

(0) 133 (N) 3N 1 (V2 (2N-1)

Vo= —— Ayt -+ A, —(As A )] . (11
3=~ 2 o A oot ws,  (11)
(1) 6\ Nl w42 (2N—1)

i = _< As o As ) s
L= 3T 2 . + + w
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By substituting (9),(10) into (5) we obtain general representations for the compo-
nents of the displacement vector (N = 2k + 1)

2N—-1
(0) 2\ 1 /(N+D) (2N)
= 0 =( A, -t A,
U {)x—i- 2% ; a. + + w

_ ; / / (21 (C) — PO)In|C — 2|dSc — V() §

2N-1
0 1 ®3) (N) 3N 1 /(N+2) (2N-1)
&Qz—— g [Asjt--'—i—As—i— —<As +--o 4+ A )}ws

2 — A+ 20
1
+2Re [\I’(z) = /@'(g)zmg — z|d54, (12)
S
M 6) = 1 /(N2) e ()
u+=83{A+2M;a—s( Ay 4 )+ZZBSwS

2 / / (@'(C) + D())n|C — =[S, — () — 20(2) p

2N—-1 (m)

Uy = { Z Asw, + 1 Z Bsws + aech”( )02 + n2®" (2 )53m}

s=1 s=1

N (m+N)

=30 A v S () + T+ (@) + T

(m=1,2,..,N, N=2k+1).

A A
Let us now express by Riemann functions the particular solutions V' and €2 of the
matrix equations (8)

N N AN A\
VXV 4+ AV =F, V>Q+ AQ=L.

These solutions have the form

B T
9= | [AeDRCE L DF D, (13)

20 20

N
Q@azl//xwm@zumm@ﬁ@
u

20 Z0
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where R(z,Z,t,t) and r(z,Z,t,t) are Riemann functions:

] AT
R(Z,?,t,t):E—Z//A(tl,t)dtldtl
t 1

t1 01

+<§>2/Z/ZA(7517¥1)<//A(tg,fg)dtgd%2>dt1dfl (14)
_(é)g/z/zA(tl’fl)[77A(t27f2)(/tQjA(tg,fg)dtgd%)dtgde]dtldfl N

_ B Pl - —
7"(2,3, t,t) =F— Z //A(tl,t)dtldtl
toi

t1 t1

+<§)2/z/ZA(tlazl)<//A(tg,fz)dmd%g)dtldfl (15)
_G)?)/Z/Zf\(thfl)[]1/tlA(tz,fz)(]Q]ZA(tg,%g)dtgd@)dthzQ]dtldzl T

Analogous formulas can be written for N = 2k.
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