Seminar of I. Vekua Institute
 of Applied Mathematics
 REPORTS, Vol. 34, 2008

ON THE INTEGRATION OF THE DIFFERENTIAL SYSTEM OF EQUATIONS FOR NONLINEAR AND NON-SHALLOW SHELLS

Meunargia T .

I. Vekua Institute of Applied Mathematics of Iv. Javakhishvili Tbilisi State University

Abstract

In this paper the geometrically nonlinear and non-shallow shells are considered. Here under non-shallow shells will be meant three-dimensional shell-type elastic bodies satisfying the conditions $\left|h b_{\alpha}^{\beta}\right| \leq q<1(\alpha, \beta=1,2)$, in contrast to shallow shells, for which the assumption $h b_{\alpha}^{\beta} \cong 0$ is accepted, where h is the semi-thickness, b_{α}^{β} are mixed components of the curvature tensor of the shell's midsurface S.

Using the method I. Vekua [1] and the method of a small parameter [2] two-dimensional system of equations for the nonlinear and non-shallow shells is obtained [3]. For any approximation of order N the complex representations of the general solutions are obtained.

Keywords and phrases: Non-shallow shells, metric tensor and tensor of curvature, midsurface of the shell.

AMS subject classification (2000): 74K25; 74B20.

1. Making use of vector and tensor notations, the equilibrium equation of the 3-D elastic bodies and stress-strain relations can be written as follows:

$$
\begin{align*}
& \nabla_{i} \boldsymbol{\sigma}^{i}+\boldsymbol{\Phi}=0, \quad \boldsymbol{\sigma}^{i}=\tau^{i j}\left(\mathbf{R}_{j}+\partial_{j} \mathbf{u}\right), \quad \tau^{i j}=E^{i j p q} e_{p q} \\
& E^{i j p q}=\lambda g^{i j} g^{p q}+\mu\left(g^{i p} g^{j q}+g^{i q} g^{j p}\right) \quad\left(\mathbf{R}_{j}=\partial_{j} \mathbf{R}, \quad g^{i j}=\mathbf{R}^{i} \mathbf{R}^{j}\right) \tag{1}\\
& e_{p q}=\frac{1}{2}\left(\mathbf{R}_{p} \partial_{q} \mathbf{u}+\mathbf{R}_{q} \partial_{p} \mathbf{u}+\partial_{p} \mathbf{u} \partial_{q} \mathbf{u}\right), \quad(i, j, p, q=1,2,3)
\end{align*}
$$

where ∇_{i} are covariant derivatives with respect to the space coordinates $x^{i}, \boldsymbol{\sigma}^{i}$ are covariant constituents of the stress tensor, $\boldsymbol{\Phi}$ is vector of volume forces. $\tau^{i j}$ and $e_{p q}$ are contravariant and covariant components of the stress and strain tensors, \mathbf{u} is the displacement vector, \mathbf{R}_{i} and \mathbf{R}^{i} are the covariant and contravariant basis vector of space.

Basis vectors $\mathbf{R}_{i}\left(\mathbf{R}^{i}\right)$ are expressed by formulas [1]:

$$
\begin{align*}
& \mathbf{R}_{\alpha}=\left(a_{\alpha}^{\beta}-x_{3} b_{\alpha}^{\beta}\right) \mathbf{r}_{\beta}, \quad \mathbf{R}^{\alpha}=\vartheta^{-1}\left[\left(1-2 H x_{3}\right) a_{\alpha}^{\beta}+x_{3} b_{\alpha}^{\beta}\right] \mathbf{r}^{\beta} \tag{2}\\
& \mathbf{R}_{3}=\mathbf{R}^{3}=\mathbf{n} \quad\left(a_{\alpha}^{\beta}=\mathbf{r}_{\alpha} \mathbf{r}^{\beta}\right)
\end{align*}
$$

where $\mathbf{r}_{\alpha}\left(\mathbf{r}^{\alpha}\right)$ and \mathbf{n} are, respectively, the basis vectors and the normal of the midsurface $S, 2 H=b_{\alpha}^{\alpha}, K=b_{1}^{1} b_{2}^{2}-b_{2}^{1} b_{1}^{2}, \vartheta=1-2 H x_{3}+K x_{3}^{2},\left(-h \leqslant x_{3}=x^{3} \leqslant h\right)$.

The relation (1) can be written as [3]:

$$
\begin{equation*}
\frac{1}{\sqrt{a}} \frac{\partial \sqrt{a} \vartheta \boldsymbol{\sigma}^{\alpha}}{\partial x^{\alpha}}+\frac{\partial \vartheta \boldsymbol{\sigma}^{3}}{\partial x^{3}}+\vartheta \boldsymbol{\Phi}=0, \tag{3}
\end{equation*}
$$

$$
\boldsymbol{\sigma}^{i}=A_{i_{1}}^{i} M^{i_{1} j_{1} p_{1} q_{1}}\left[A_{p_{1}}^{p}\left(\mathbf{r}_{q_{1}} \partial_{p} \mathbf{u}\right)+A_{q_{1}}^{q}\left(\mathbf{r}_{p_{1}} \partial_{q} \mathbf{u}\right)+A_{p_{1}}^{p} A_{q_{1}}^{q} \partial_{p} \mathbf{u} \partial_{q} \mathbf{u}\right]\left(\mathbf{r}_{j_{1}}+A_{j_{1}}^{j} \partial_{j} \mathbf{u}\right)
$$

where a is the discriminant of metric tensor of the midsurface S,

$$
\begin{gather*}
M^{i_{1} j_{1} p_{1} q_{1}}=\lambda a^{i_{1} j_{1}} a^{p_{1} q_{1}}+\mu\left(a^{i_{1} p_{1}} a^{j_{1} q_{1}}+a^{i_{1} q_{1}} a^{j_{1} p_{1}}\right) \tag{4}\\
A_{\alpha_{1}}^{\alpha}=\mathbf{R}^{\alpha} \mathbf{r}_{\alpha_{1}}, \quad A_{3}^{\alpha}=\mathbf{R}^{\alpha} \mathbf{n}=0, \quad a^{\alpha \beta}=\mathbf{r}^{\alpha} \mathbf{r}^{\beta}, \quad a^{\alpha 3}=a^{3 \alpha}=\mathbf{r}^{\alpha} \mathbf{n}=0, \quad a^{33}=1 .
\end{gather*}
$$

2. The two-dimensional finite system of equilibrium equations with respect to component of displacement vector in the isometric coordinates has the complex form [3]:

$$
\begin{align*}
& 4 \mu \partial_{\bar{z}}\left(\Lambda^{-1} \partial_{z}{ }^{(m, n)} u_{+}\right)+2(\lambda+\mu) \partial_{\bar{z}}^{(m, n)}{ }^{(m, n)}+2 \lambda \partial_{\bar{z}}^{(m, n)} u_{3}^{\prime}- \\
& (2 m+1) \mu\left[2 \partial_{\bar{z}}\left(\begin{array}{c}
(m-1, n) \\
u_{3}
\end{array}+\stackrel{(m-3, n)}{u_{3}}+\cdots\right)+\stackrel{(m-1, n)}{u_{+}^{\prime}}+\stackrel{(m-3, n)}{u_{+}^{\prime}}+\cdots\right]=\stackrel{(m, n)}{F_{+}^{\prime}}, \\
& \mu\left(\nabla^{2} \stackrel{(m, n)}{u_{3}}+\stackrel{(m, n)}{\theta^{\prime}}\right)-(2 m+1)[\lambda(\stackrel{(m-1, n)}{\theta}+\stackrel{(m-3, n)}{\theta}+\cdots) \tag{5}\\
& \left.+(\lambda+2 \mu)\left(\begin{array}{c}
(m-1, n) \\
u_{3}^{\prime}
\end{array}+\stackrel{(m-3, n)}{u_{3}^{\prime}}+\cdots\right)\right]=\stackrel{(m, n)}{F_{3}} \\
& \quad\left(m=0,1, \ldots, N ; \stackrel{(k, n)}{u_{i}}=0, k>N, \stackrel{(m, n)}{u_{+}}=\stackrel{(m, n)}{u_{1}}+i \stackrel{(m, n)}{u_{2}}\right),
\end{align*}
$$

where

$$
\begin{aligned}
& \stackrel{(m)}{u_{i}}=\frac{2 m+1}{2 h} \int_{-h}^{h} u_{i} P_{m}\left(\frac{x_{3}}{h}\right) d x_{3}=\sum_{n=1}^{\infty} \stackrel{(m, n)}{u_{i}} \varepsilon^{n}, \\
& \stackrel{(m)}{u_{i}^{\prime}}=(2 m+1)\left({ }^{(m+1)} u_{i}+\stackrel{(m+3)}{u_{i}}+\cdots\right), \\
& \stackrel{(m, n)}{\theta}=2 \operatorname{Re}\left(\Lambda^{-1} \partial_{z} \stackrel{(m, n)}{u_{+}}\right), \quad z=x^{1}+i x^{2}, \quad 2 \partial_{z}=\partial_{1}-i \partial_{2}, \\
& \nabla^{2}=4 \Lambda^{-1} \partial_{z \bar{z}}^{2}, \quad d s^{2}=\Lambda(z, \bar{z}) d z d \bar{z},
\end{aligned}
$$

P_{m} is the Legendre polynomial of degree m, the right-hand sides $\stackrel{(m)}{F_{+}}=\stackrel{(m)}{F_{1}}+i \stackrel{(m)}{F_{2}}$ and (m)
F_{3} are expressed by means of previous approximations, i.e.,

$$
\stackrel{(m)}{F}=\sum_{n=1}^{\infty} \stackrel{(m, n)}{F} \varepsilon^{n}, \quad \stackrel{(m, n)}{F}=F(\stackrel{(m, n-1)}{u}, \stackrel{(m, n-2)}{u}, \ldots) .
$$

Here $\varepsilon=\frac{h}{R}$ is small parameter, R is a certain characteristic radius of curvature of the midsurface of shell [2].

Below the upper index will be omitted.

The solution of the homogeneous system (5) we can find the form

$$
\begin{align*}
& \stackrel{(m)}{u_{+}}=\partial_{\bar{z}}\left(\stackrel{(m)}{V_{1}}+i \stackrel{(m)}{V_{2}}\right)+\left(\frac{1}{\pi} \iint_{S} \frac{\overline{\varphi^{\prime}(\zeta)}-æ_{1} \varphi^{\prime}(\zeta) d S_{\zeta}}{\bar{\zeta}-\bar{z}}-\overline{\psi^{\prime}(\zeta)}\right) \delta_{0 m} \\
& -\left(\frac{1}{\pi} \iint_{S} \frac{\Phi^{\prime}(\zeta)+\overline{\Phi^{\prime}(\zeta)} d S_{\zeta}}{\bar{\zeta}-\bar{z}}+\eta_{1} \overline{\Phi^{\prime \prime}(z)}-2 \overline{\Psi^{\prime}(z)}\right) \delta_{1 m}+æ_{2} \overline{\varphi^{\prime \prime}(z)} \delta_{2 m}+\eta_{2} \overline{\Phi^{\prime \prime}(z)} \delta_{3 m}, \\
& \stackrel{(m)}{u})_{u_{3}}=\stackrel{(m)}{V}_{3}-\left(\frac{1}{\pi} \iint_{S}\left(\Phi^{\prime}(\zeta)+\overline{\Phi^{\prime}(\zeta)}\right) l n|\zeta-z| d S_{\zeta}-\Psi(z)-\overline{\Psi(z)}\right) \delta_{0 m} \tag{6}\\
& -\frac{3}{2} æ_{2}\left[\left(\varphi^{\prime}(z)+\overline{\varphi^{\prime}(z)}\right) \delta_{1 m}+\left(\Phi^{\prime}(z)+\overline{\Phi^{\prime}(z)}\right) \delta_{2 m}\right]
\end{align*}
$$

$$
\begin{aligned}
& \stackrel{(0)}{V_{1}}=\stackrel{(0)}{V_{2}}=0, \stackrel{(0)}{u_{3}}=\Psi(z)+\overline{\Psi(z)}, \quad \text { if } N=0 \\
& \delta_{i j}=\left\{\begin{array}{l}
0, i \neq j, \\
1, i=j,
\end{array} \quad\left(d S_{\zeta}=\Lambda(\zeta, \bar{\zeta}) d \zeta d \bar{\zeta}, \zeta=\xi+i \eta\right)\right.
\end{aligned}
$$

where $\varphi^{\prime}(z), \psi^{\prime}(z), \Phi^{\prime}(z)$ and $\Psi^{\prime}(z)$ are holomorphic functions of z and express the biharmonic solution of the system (5),

$$
\begin{gathered}
æ_{1}=\left\{\begin{array}{l}
\frac{\lambda+3 \mu}{\lambda+\mu}, N=0, \\
\frac{5 \lambda+6 \mu}{3 \lambda+2 \mu}, N \neq 0,
\end{array} \quad \eta_{1}=\left\{\begin{array}{l}
\frac{\lambda+2 \mu}{\mu}, N=1, \\
\frac{4(\lambda+\mu)}{\lambda+2 \mu}, N=2, \\
\frac{23 \lambda+24 \mu}{5(\lambda+2 \mu)}, N=3,
\end{array}\right.\right. \\
æ_{2}=\frac{4 \lambda}{3(3 \lambda+2 \mu)}, \quad \eta_{2}=-\frac{4(3 \lambda+4 \mu)}{15(\lambda+2 \mu)} .
\end{gathered}
$$

Substituting expressions (6) in (5) we have

$$
\begin{align*}
& (\lambda+2 \mu) \nabla^{2} \stackrel{(m)}{V_{1}}+2 \lambda \stackrel{(m)}{V_{3}^{\prime}}-(2 m+1)\left[2\left(\stackrel{(m-1)}{V_{3}}+\stackrel{(m-3)}{V_{3}}+\cdots\right)+\stackrel{(m-1)}{V_{1}^{\prime}}+\stackrel{(m-3)}{V_{1}^{\prime}}+\cdots\right]=0, \\
& \mu \nabla^{2}\left(\stackrel{(m)}{V_{3}}+\frac{1}{2} V_{1}^{(m)} V_{1}^{\prime}\right)-(2 m+1)\left[\lambda \nabla^{2}\left(\stackrel{(m-1)}{V_{1}}+\cdots\right)+(\lambda+2 \mu)\left(\stackrel{(m-1)}{V_{3}^{\prime}}+\cdots\right)\right]=0, \tag{7}\\
& \mu\left[\nabla^{2} \stackrel{(m)}{V_{2}}-(2 m+1)\left(\stackrel{(m-1)}{V_{2}^{\prime}}+\stackrel{(m-3)}{V_{2}^{\prime}}+\cdots\right)\right]=0, \\
& \left(\stackrel{m}{V}^{\prime}=(2 m+1)[\stackrel{(m+1)}{V}+\stackrel{(m+3)}{V}+\cdots]\right) \quad(m=0,1, \ldots, N=2 k+1) .
\end{align*}
$$

Using now the matrix notation for $\stackrel{(m)}{V}_{V_{i}}$ from (6) we obtain

$$
\begin{equation*}
\nabla^{2} V+A V=0, \quad \nabla^{2} \Omega+B \Omega=0 \tag{8}
\end{equation*}
$$

where V and Ω are culumn-matrices

$$
\begin{gathered}
V=\left(\stackrel{(2)}{V_{1}}, \stackrel{(3)}{V}, \ldots, \stackrel{(N)}{V_{1}}, \stackrel{(3)}{V_{1}}, \stackrel{(2)}{V_{3}}, \ldots, \stackrel{(N)}{V_{3}}\right)^{T}, \quad \Omega=\left(\stackrel{(1)}{V_{2}}, \stackrel{(2)}{V_{2}}, \ldots, \stackrel{(N)}{V_{2}}\right)^{T}, \\
A=\left\{a_{i j}\right\}_{i, j=1}^{2 N-1}, \quad B=\left\{b_{i j}\right\}_{i, j=1}^{N} .
\end{gathered}
$$

Let the numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 N-1}$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{N}$ be simple eigenvalues of matrices A and B respectively, and $A_{s}=\left(\stackrel{(2)}{A_{s}}, \ldots, \stackrel{(2 N)}{A_{s}}\right)^{T}, B_{s}=\left(\stackrel{(1)}{B_{s}}, \ldots, \stackrel{(N)}{B_{s}}\right)^{T}$ their eigenvectors.

The general solutions of homogeneous matrix equations (6) have the form

$$
\begin{equation*}
V=\sum_{s=1}^{2 N-1} A_{s} w_{s}, \quad \Omega=\sum_{s=1}^{N} B_{s} \omega_{s} \tag{9}
\end{equation*}
$$

where w_{s} and ω_{s} are arbitrary solutions of the following scalar equations

$$
\nabla^{2} w_{s}+\alpha_{s} w_{s}=0, \quad \nabla^{2} \omega_{s}+\beta_{s} \omega_{s}=0
$$

Hence

$$
\begin{array}{ll}
\stackrel{(m)}{V_{1}}=\sum_{s=1}^{2 N-1} \stackrel{(m)}{A_{s}} w_{s} & (m=2,3, \ldots, N), \\
\stackrel{(m)}{V_{2}}=\sum_{s=1}^{N} \stackrel{(m)}{B_{s}} \omega_{s} & (m=1,2, \ldots, N), \quad \stackrel{(0)}{V_{2}}=0, \tag{10}\\
\stackrel{(m)}{V_{3}}=\sum_{s=1}^{N} \stackrel{(m+N)}{A_{s}} w_{s} \quad(m=1,2, \ldots, N) .
\end{array}
$$

Making use of equations (6) for $m=0$ and $m=1$ we obtain

$$
\begin{align*}
& \stackrel{(0)}{V_{1}}=\frac{2 \lambda}{\lambda+2 \mu} \sum_{s=1}^{2 N-1} \frac{1}{\alpha_{s}}\left(\begin{array}{c}
(N+1) \\
A_{s}
\end{array}+\stackrel{(N+3)}{A_{s}}+\cdots+\stackrel{(2 N)}{A_{s}}\right) w_{s}, \quad \stackrel{(0)}{V_{2}}=0 \\
& \stackrel{(0)}{V_{3}}=-\frac{1}{2} \sum_{s=1}^{2 N-1}\left[\stackrel{(3)}{A_{s}}+\cdots+\stackrel{(N)}{A_{s}}+\frac{3 \lambda}{\lambda+2 \mu} \frac{1}{\alpha_{s}}\left(\begin{array}{c}
(N+2) \\
A_{s}
\end{array}+\cdots+\stackrel{(2 N-1)}{A_{s}}\right)\right] w_{s} \tag{11}\\
& \stackrel{(1)}{1}_{V_{1}}=\frac{6 \lambda}{\lambda+2 \mu} \sum_{s=1}^{2 N-1} \frac{1}{\alpha_{s}}\left(\begin{array}{c}
(N+2) \\
A_{s}
\end{array}+\cdots+\stackrel{(2 N-1)}{A_{s}}\right) w_{s}
\end{align*}
$$

By substituting (9),(10) into (5) we obtain general representations for the components of the displacement vector ($N=2 k+1$)

$$
\begin{align*}
& \stackrel{(0)}{u_{+}}=\partial_{\bar{z}}\left\{\frac{2 \lambda}{\lambda+2 \mu} \sum_{s=1}^{2 N-1} \frac{1}{\alpha_{s}}\left(\begin{array}{c}
(N+1) \\
A_{s}
\end{array}+\cdots+\stackrel{(2 N)}{A_{s}}\right) w_{s}\right. \\
& \left.-\frac{2}{\pi} \iint_{S}\left(æ_{1} \varphi^{\prime}(\zeta)-\overline{\varphi^{\prime}(\zeta)}\right) \ln |\zeta-z| d S_{\zeta}-\overline{\Psi(z)}\right\}, \\
& \stackrel{(0)}{u_{3}}=-\frac{1}{2} \sum_{s=1}^{2 N-1}\left[\stackrel{(3)}{A_{s}}+\cdots+\stackrel{(N)}{A_{s}}+\frac{3 \lambda}{\lambda+2 \mu} \frac{1}{\alpha_{s}}\left(\begin{array}{c}
(N+2) \\
A_{s}
\end{array}+\cdots+\stackrel{(2 N-1)}{A_{s}}\right)\right] w_{s} \\
& +2 \operatorname{Re}\left[\Psi(z)-\frac{1}{\pi} \iint_{S} \Phi^{\prime}(\zeta) \ln |\zeta-z| d S_{\zeta}\right], \tag{12}\\
& \stackrel{(1)}{u_{+}}=\partial_{\bar{z}}\left\{\frac{6 \lambda}{\lambda+2 \mu} \sum_{s=1}^{2 N-1} \frac{1}{\alpha_{s}}\left(\stackrel{(N+2)}{A_{s}}+\cdots+\stackrel{(2 N-1)}{A_{s}}\right)+i \sum_{s=1}^{N} \stackrel{(1)}{B_{s} \omega_{s}}\right. \\
& \left.+\frac{2}{\pi} \iint_{S}\left(\Phi^{\prime}(\zeta)+\overline{\Phi^{\prime}(\zeta)}\right) \ln |\zeta-z| d S_{\zeta}-\eta_{1} \overline{\Phi^{\prime}(z)}-2 \overline{\Psi(z)}\right\}, \\
& \stackrel{(m)}{u_{+}}=\partial_{\bar{z}}\left\{\sum_{s=1}^{2 N-1} \stackrel{(m)}{A}_{A_{s}} w_{s}+i \sum_{s=1}^{N} \stackrel{(m)}{B_{s}} \omega_{s}+æ_{2} \overline{\varphi^{\prime \prime}(z)} \delta_{2 m}+\eta_{2} \overline{\Phi^{\prime \prime}(z)} \delta_{3} m\right\}, \\
& { }_{u_{3}}^{(m)}=\sum_{s=1}^{N} \stackrel{(m+N)}{A_{s}} w_{s}-\frac{3}{2} æ_{2}\left[\left(\varphi^{\prime}(z)+\overline{\varphi^{\prime}(z)}\right) \delta_{1 m}+\left(\Phi^{\prime}(z)+\overline{\Phi^{\prime}(z)}\right) \delta_{2 m}\right] \\
& (m=1,2, \ldots, N, \quad N=2 k+1) .
\end{align*}
$$

Let us now express by Riemann functions the particular solutions \hat{V} and $\hat{\Omega}$ of the matrix equations (8)

$$
\nabla^{2} \hat{V}+A \hat{V}=F, \quad \nabla^{2} \hat{\Omega}+A \hat{\Omega}=L
$$

These solutions have the form

$$
\begin{align*}
& \hat{V}(z, \bar{z})=\frac{1}{u} \int_{z_{0}}^{z} \int_{\bar{z}_{0}}^{\bar{z}} \Lambda(t, \bar{t}) R(z, \bar{z}, t, \bar{t}) F(t, \bar{t}) d t d \bar{t} \tag{13}\\
& \hat{\Omega}(z, \bar{z})=\frac{1}{u} \int_{z_{0}}^{z} \int_{\bar{z}_{0}}^{\bar{z}} \Lambda(t, \bar{t}) r(z, \bar{z}, t, \bar{t}) L(t, \bar{t}) d t d \bar{t}
\end{align*}
$$

where $R(z, \bar{z}, t, \bar{t})$ and $r(z, \bar{z}, t, \bar{t})$ are Riemann functions:

$$
\begin{align*}
& R(z, \bar{z}, t, \bar{t})=E-\frac{A}{4} \int_{t}^{z} \int_{\bar{t}}^{\bar{z}} \Lambda\left(t_{1}, \bar{t}_{t} d t_{1} d \bar{t}_{1}\right. \\
& +\left(\frac{A}{4}\right)^{2} \int_{t}^{z} \int_{\bar{t}}^{\bar{z}} \Lambda\left(t_{1}, \bar{t}_{1}\right)\left(\int_{t}^{t_{1}} \int_{\bar{t}}^{\bar{t}_{1}} \Lambda\left(t_{2}, \bar{t}_{2}\right) d t_{2} d \bar{t}_{2}\right) d t_{1} d \bar{t}_{1} \tag{14}\\
& -\left(\frac{A}{4}\right)^{3} \int_{t}^{z} \int_{\bar{t}}^{\bar{z}} \Lambda\left(t_{1}, \bar{t}_{1}\right)\left[\int_{t}^{t_{1}} \int_{\bar{t}}^{\bar{t}_{1}} \Lambda\left(t_{2}, \bar{t}_{2}\right)\left(\int_{t}^{t_{2}} \int_{\bar{t}}^{\bar{t}_{2}} \Lambda\left(t_{3}, \bar{t}_{3}\right) d t_{3} d \bar{t}_{3}\right) d t_{2} d \bar{t}_{2}\right] d t_{1} d \bar{t}_{1}+\cdots \\
& r(z, \bar{z}, t, \bar{t})=E-\frac{B}{4} \int_{t}^{z} \int_{\bar{t}}^{\bar{z}} \Lambda\left(t_{1}, \bar{t}_{1} d t_{1} d \bar{t}_{1}\right. \\
& +\left(\frac{B}{4}\right)^{2} \int_{t}^{z} \int_{\bar{t}}^{\bar{z}} \Lambda\left(t_{1}, \bar{t}_{1}\right)\left(\int_{t}^{t_{1}} \int_{\bar{t}}^{\bar{t}_{1}} \Lambda\left(t_{2}, \bar{t}_{2}\right) d t_{2} d \bar{t}_{2}\right) d t_{1} d \bar{t}_{1} \tag{15}\\
& -\left(\frac{B}{4}\right)^{3} \int_{t}^{z} \int_{\bar{t}}^{\bar{z}} \Lambda\left(t_{1}, \bar{t}_{1}\right)\left[\int_{t}^{t_{1}} \int_{\bar{t}}^{\bar{t}_{1}} \Lambda\left(t_{2}, \bar{t}_{2}\right)\left(\int_{t}^{t_{2}} \int_{\bar{t}}^{\bar{t}_{2}} \Lambda\left(t_{3}, \bar{t}_{3}\right) d t_{3} d \bar{t}_{3}\right) d t_{2} d \bar{t}_{2}\right] d t_{1} d \bar{t}_{1}+\cdots
\end{align*}
$$

Analogous formulas can be written for $N=2 k$.

REFERENCES

1. Vekua I.N. Shell Theory: General Methods of Construction, Pitman Advanced Publishing Program, Boston-London-Melburne, 1985, 287 pp.
2. Goldenveizer A.L. Theory of Elastic thin Shells, Moscow, Nauka, 1976, 512 p. (in Russian).
3. Meunargia T. On the Application of the Method of a Small Parameter in the Theory of Non-Shallow I.N. Vekua's Shells, Proc. A. Razmadze Math. Inst. 141 (2006), 87-122.

Received: 28.06.2008; revised: 29.10.2008; accepted: 28.11.2008.

