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Abstract. In this paper we define the generalized stochastic integral for a wide class of
Banach space valued random processes (generalized random processes) with respect to real
Wiener processes, which is the generalized random element. If it is decomposable by the ran-
dom element, then we say that this random element is the stochastic integral. Therefore, the
problem of existence of the stochastic integral is reduced to the problem of decomposability
of the generalized random element. To show the naturalness of this definition, we consider
the case, when the Banach space is C[0; 1]. To this end we introduce the weakly mean square
continuous stochastic processes and study some of its properties.
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Introduction

The main problem of developing the stochastic analysis in the Banach space in-
volves the definition of the Ito stochastic integral. Many authors accost to the finite
dimensional method, in which the stochastic integral is defined first for step functions,
and for the second order stochastic processes as a limit of a sequence of stochastic in-
tegrals from step functions converging to an integrand function. However, this method
makes it possible to define the stochastic integral in the Banach spaces with special
geometric properties (see [2],[3],[4]). In an arbitrary Banach space it is still possible to
define the stochastic integral only in case, when the integrand function is nonrandom
(see[5],[6]).

In this paper we define the generalized stochastic integral for a wide class of the
Banach space valued random processes (generalized random processes) with respect to
a real Wiener process, which is the generalized random element. If it is decomposable
by the random element, then we say that this random element is the stochastic inte-
gral. Therefore, the problem of existence of the stochastic integral is reduced to the
problem of decomposability of the generalized random element. This is a natural way
of overcoming the present problem. We show this for the case when the Banach space
is C[0, 1]. We introduce also the weakly mean square continuous stochastic processes,
and develop some of their behaviours.

Let X be a real separable Banach space, X∗ its conjugate, B(X) the Borel σ-algebra
of X, (Ω,B, P ) a probability space. Continuous linear operator L : X∗ → L2(Ω,B, P ) is
called a generalized random element (GRE). Denote by M1 :=
= L(X∗, L2(Ω,B, P )) the Banach space of GRE with the norm ‖L‖ = sup‖x∗‖≤1 ‖Lx∗‖L2

.
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A random element (a measurable map) ξ : Ω → X is said to have a weak second order,
if for all x∗ ∈ X∗, E〈ξ, x∗〉2 < ∞. We can realize the random element ξ as an element
of M1 : Lξx

∗ = 〈ξ, x∗〉 (continuity of Lξ follows from the closed graph theorem).
Denote by M2 the linear space of all random elements of weak second order with the
norm ‖ξ‖ = ‖Lξ‖. Therefore, we can assume M2 ⊆ M1. The correlation operator of
L ∈ M1 is defined as RL : X∗ → X∗∗, RL = L∗L. RL is a positive and symmetric
linear operator. If L = Lξ ∈ M2, then RL maps X∗ to X. It is known (see [1],
corollary of lemma 3.1.1), that if R is a positive and symmetric linear operator from
X∗ to X, then there exists (x∗k)k∈N ⊂ X∗ and (xk)k∈N ⊂ X such that 〈Rx∗k, x

∗
j〉 = δkj,

Rx∗k = xk, and for x∗ ∈ X∗, Rx∗ =
∑∞

k=1〈xk, x
∗〉xk. Let L ∈ M1 . Consider the map

mL : X∗ → R1, mLx∗ = ELx∗. mL is linear and bounded. Therefore, mL ∈ X∗∗, and
is called the mean of the GRE L. When L ∈M2, that is, there exists ξ : Ω → X such
that Lx∗ = 〈ξ, x∗〉, then m ∈ X (see[1], Th.2.3.1) and it is the Pettis integral of ξ.

Proposition 1. Let L ∈M2 ⊂M1; then RL : X∗ → X.
Proof. Let L ∈M2, then there exists ξn, n = 1, 2, . . . such that ‖Lξn −L‖ → 0.

Denote by Rn, Rn : X∗ → X the covariance operator of the random element ξn. By
the factorization lemma Rn = L∗ξn

Lξn , Lξn : X∗ → Gn, L∗ξn
: Gn → X where Gn-is

the closed separable subspace of L2(Ω,B, P ). Let H2 denotes L(G1

⋃G2), H3 :=
L(G3

⋃H2), . . .Hn := L(Gn

⋃Hn−1); H2 ⊂ H3 ⊂ . . . .H :=
⋃

nHn. For all n we can
represent H as H=Gn

⊕G⊥n . For any x∗ ∈ X∗, ‖Lx∗−Lnx∗‖→ 0; therefore,

Lx∗ ∈ H and RL = L∗L.‖Rnx∗ −RLx∗‖X∗∗ = ‖L∗nLnx∗ − L∗Lx∗‖X∗∗

≤ sup‖y∗‖≤1 |〈L∗nLnx
∗, y∗〉 − 〈L∗Lnx∗, y∗〉|

+ sup‖y∗‖≤1 |〈L∗Lnx∗, y∗〉 − 〈L∗Lx∗y∗〉| ≤ ‖Lnx
∗‖ sup‖y∗‖≤1 ‖Lny∗ − Ly∗‖

+ sup‖y∗‖≤1 ‖Ly∗‖‖Lnx
∗ − Lx∗‖ → 0, n →∞. That is RLx∗ = limn→∞Rnx

∗ ∈ X;

therefore ,RLX∗⊆X.

For C[0, 1] we prove below necessary and sufficient condition for RLX∗⊆X.

1. Stochastic integral. Let (Wt)t∈[0,1] be one-dimensional Wiener process,
(Ft)t∈[0,1] an increasing family of σ-algebras such that a)Wt is Ft-measurable for all
t ∈ [0, 1]; b) WS −Wt is independent of the σ algebra Ft for all s > t. F0 contains all
P-null sets in B. Let (Lt)t∈[0,1] be a family of GRE. We call it a generalized random
process (GRP). If we have a weak second-order random process (ξt)t∈[0,1], ξt : Ω→X it
will be realized as a GRP-Lξtx

∗ = 〈ξt, x
∗〉.

Definition 1. The GRP (Lt)t∈[0,1] is called nonanticipating with respect to (Ft)t∈[0,1],
if for all x∗∈X∗ the real random process Ltx

∗ has a stochastically equivalent mea-
surable modification, and for all t ∈ [0, 1] Ltx

∗ is Ft-measurable. By TM1 we de-
note the linear normed spaces of nonanticipating GRP (Lt)t∈[0,1], for which ‖Lt‖ :=

sup‖x∗‖≤1 (
1∫
0

E(Ltx
∗)2dt)

1
2 < ∞. If ξt : Ω→X, t ∈ [0, 1] is a random process such that

for all x∗∈X∗,〈ξt, x
∗〉t∈[0,1] is nonanticipating, and

1∫
o

E〈ξt, x
∗〉2dt < ∞, then, from closed
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graph theorem it follows that Lξt ∈ TM1. For all x∗ ∈ X∗ we can define the scalar

stochastic integral
1∫
0

Ltx
∗dWt.

Definition 2. For any (Lt)t∈[0,1]∈TM1, the operator I(L) : X∗ → L2(Ω,B, P )

defined as I(L)x∗ =
1∫
0

Ltx
∗dWt is called the generalized stochastic integral (GSI) of

(LT )t∈[0,1].
It is easy to see that I(L) ∈M1.
Proposition 2. I : TM1 → M1 is an isometric operator; for all (Lt)t∈[0,1] ∈

TM1 , EI(L) = 0∈X∗∗, 〈RI(L)x
∗, y∗〉 = EI(L)x∗I(L)y∗ = 〈RLx∗, y∗〉, where RL :

X∗→X∗∗, 〈RLx∗, y∗〉 =
1∫
0

∫
Ω
Ltx

∗Lty
∗dPdt.

Proof. It follows that E
1∫
0

Ltx
∗dWt is a linear bounded functional from X∗ to R1,

that belongs to X∗∗, and equals to 0.

‖I(L)‖2
M1

= sup
‖x∗‖≤1

E(

1∫

0

Ltx
∗dWt)

2 = sup
‖x∗‖≤1

E

1∫

0

L2
t x
∗dt = ‖L‖2

TM1

The equalities of the proposition follow from the definitions of the correlation operator
of a GRE.

Definition 3. A random element η : Ω→X is called the stochastic integral of
(Lt)t∈[0,1] (if such an element exists), if 〈η, x∗〉 = I(L)x∗ almost surely (a.s.) and

thereby, we denote it as η =
1∫
0

LtdWt.

2. The case of C[0, 1]. We consider the real-valued random processes, (ξt)t∈[0,1]

which give GRE on C[0, 1].
Proposition 3. Let the random process (ξt)t∈[0,1] is such that supt∈[0,1] E(ξt)

2 < ∞,
and the realizations of it are a. s. measurable; then, it can realize GRE Tξ : C[0, 1]∗ →
L2(Ω,B,P).

Proof. Let m(t) := Eξt. It is obvious that supt∈[0,1] |m(t)| < ∞. Therefore, m(t) ∈
M := C[0, 1]∗∗, 〈m(t), ϕ〉 =

∫ 1

0
m(t)dϕ(t), ϕ ∈ C[0, 1]∗, and without loss of generality,

we can assume that m(t) = 0. Let r(t, s) := Eξtξs. Then the operator Rξ : C[0, 1]∗ →
M, (Rξϕ)(t) =

∫ 1

0
r(t, s)dϕ(s) is a positive, symmetric, linear operator. By the factor-

ization lemma (see [1], lemma 3.1.1) Rξ = AA∗, where A∗ : C[0, 1]∗ → L2[0, 1]. Denote
by k(t, τ) the function A∗δt ∈ L2[0, 1], δt ∈ C[0, 1]∗, 〈f, δt〉 = f(t), f ∈ C[0, 1]. Let G be
the Hilbert subspace of L2[0, 1], spanned by k(t, .), t ∈ [0, 1]; S-be the Hilbert subspace

of L2(Ω,B, P ) spanned by ξt, t ∈ [0, 1]. Then as r(t, s) =
∫ 1

0
k(t, τ)k(s, τ)dτ = Eξtξs,

U : G → S, Uk(t, .) = ξt is isometry, and T = UA∗ : C[0, 1]∗ → L2(Ω,B, P ) is
GRE realized by (ξt)t∈[0,1], T δt = ξt. We can directly write the operator Tξ: For any

ϕ ∈ C[0, 1]∗, let Tξ(ϕ) =
∫ 1

0
ξtdϕ(t). This integral exists as if we consider the function

F : ([0, 1],B, ϕ) → L2(Ω,B, P ), F (t) = ξt. Then, for any η ∈ L2(Ω,B, P ), 〈F (t), η〉 =

Eξtη is measurable and integrable; therefore the Pettis integral
∫ 1

0
ξtdϕ(t) ∈ L2(Ω,B, P )
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exists and sup‖ϕ‖≤1 ‖Tξϕ‖2 = sup‖ϕ‖≤1 E(
∫ 1

0
ξtdϕ(t))2 ≤ supt Eξ2

t ‖ϕ‖2. That is, T is
bounded.

Rξ maps C[0, 1]∗ to M . When does Rξ map to C[0, 1] ⊂ M? Now we shall answer
this question. First we shall introduce the following definition:

Definition 4. The random process (ξt)T∈[0,1] is called weakly mean square contin-
uous, if for any t and tn → t, (tn)n∈N , t from [0, 1], 〈ξtn , η〉 → 〈ξt, η〉 when n → ∞ for
all η ∈ L2(Ω,B, P ).

The following theorem is true.
Theorem 1. (ξt)t∈[0,1] is a weakly mean square continuous random process if and

only if, Rξ is a continuous operator from C[0, 1]∗ to C[0, 1].
Proof. Let Rξ : C[0, 1]∗ → C[0, 1] and S be the Hilbert subspace of L2(Ω,B, P )

spanned by (ξt)t∈[0,1]. By the factorization lemma, Rξ = TT ∗, T ∗ : C[0, 1]∗ → S, T ∗δt =
ξt; L2(Ω,B, P ) = S ⊕ S⊥, if η = h ⊕ h⊥, T η = Th. Let tn → t.〈T ∗δtn , η〉 = 〈Tη, δtn〉.
As Tη ∈ C[0, 1], 〈T ∗δtn , η〉 → 〈T ∗δt, η〉. Therefore, 〈ξtn , η〉 → 〈ξt, η〉. That is, (ξt)t∈[0,1]

is weakly mean square continuous.
Let now (ξt)t∈[0,1] be a weakly mean square continuous, then supt∈[0,1] E(ξt)

2 <
∞, because if we assume that supt∈[0,1] E(ξt)

2 = ∞, then there exists (tk)k∈N , such
that sup E(ξtk)

2 = ∞. Choose (tkn)kn∈N converging to some t0, as ξtkn
converges

weakly in L2(Ω,B, P ), supkn
E(ξtkn

)2 < ∞; therefore, our assumtion is not true, that
is, supt∈[0,1] E(ξt)

2 < ∞.

Consider the operator Rξ : C[0, 1]∗ → M, (Rξϕ)(t) =
∫ 1

0
r(t, s)dϕ(s), where r(t, s) =

Eξtξs. Let Rξ = AA∗ be the factorization of Rξ.A
∗ : C[0, 1]∗ → L2[0, 1]. Denote A∗δt

by k(t, τ) ∈ L2[0, 1]. 〈A∗δt, g〉 =
∫ 1

0
k(t, τ)g(τ)dτ . Let G be the Hilbert subspace of

L2[0, 1], spanned by k(t, .), t ∈ [0, 1], S be the Hilbert subspace of L2(Ω,B, P ) spanned
by ξt, t ∈ [0, 1]. The function k : [0, 1] → L2[0, 1] is weakly continuous as if tn → t, then∫ 1

0
(k(t, τ) − k(tn, τ))g(τ)dτ = E(ξt − ξtn)g → 0, tn → t. For any g ∈ L2[0, 1], Ag(t) =

〈Ag, δt〉 = 〈A∗δt, g〉 =
∫ 1

0
k(t, τ)g(τ)dτ.|Ag(t)−Ag(s)| = | ∫ (k(t, τ)−k(s, τ))g(τ)dτ | →

0, when s → t, as k : [0, 1] → L2[0, 1] is weakly continuous. Therefore, Ag ∈ C[0, 1].
That is Rξ : C[0, 1]∗ → C[0, 1].

Weakly mean square continuity of random processes is an important condition. For
example, for any L ∈ [0, 1] dense subset, if we have random variables (ξs), s ∈ L, we
can reestablish (ξt)t∈[0,1] a.s. as the space L2(Ω,B,P) is weakly-sequentially complete.
The following theorem is also true.

Theorem 2. If the random process (ξt)t∈[0,1] is weakly mean square continuous,
then for an arbitrary dense subset L ∈ [0, 1], there exists L-separable stochastically
equivalent modification of (ξt)t∈[0,1].

Proof. Remember that the non-random function f : [0, 1] → R is L-separable, if for
all t ∈ [0, 1] limδ→0 sup|t−s|<δ,s∈L f(s) ≥ f(t) ≥ limδ→0 inf |t−s|≤δ,s∈L f(s). A random pro-

cess is L-separable if its realizations are L-separable. Denote ξt := limδ→0 sup|t−s|≤δ,s∈L ξs

and ξt := limδ→0 inf |t−s|≤δ,s∈L ξs We must prove that ξt ≥ ξt ≥ ξt a.s. In order to do we
need the following lemma:

Lemma 1. If the sequence of random variables (Xn)n∈N converges weakly mean
square to X, then limn→∞ supk≥n Xk ≥ X ≥ limn→∞ infk≥nXk a.s.

Proof. Without loss of generality assume, that X = 0, and prove that
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limn→∞ supk≥n Xk ≥ 0. Let us suppose the contrary. That is for A :=
(ω : limn→∞ supk≥n Xk(ω) < 0), P (A) > 0. We can assume that A is the whole Ω. For
any Z ∈ L2(Ω,B, P ), we have

∫
Ω

Xn(ω)Z(ω)dP → 0, n →∞, but limn supk≥n Xk < 0.
Denote Yn := supk≥n Xk, Y := limn supk≥n Xk.Yn ≥ Yn+1, n = 1, 2, . . . and Yn ↓ Y
a.s. Therefore, there exists B ⊂ Ω, P (B) > 0 and such number n, that Yn(ω) < 0
for ω ∈ B. As XnIB(ω) ≤ YnIB(ω), there exists the integral

∫
Ω

Yn(ω)IB(ω)dp, and∫
Ω

Xn(ω)IB(ω)dp ≤ ∫
Ω

Yn(ω)IB(ω)dp < 0.
∫
Ω

Yn(ω)IB(ω)dp is a decreasing sequence
and limn

∫
Ω

Yn(ω)IBdP < 0. Therefore, limn→∞
∫

Ω
Xn(ω)IB(ω)dp ≤ limn→∞∫

Ω
Yn(ω)IB(ω)dP < 0, but, as we have weakly mean square continuity,

∫
Ω

Xn(ω)IB(ω)dp
→ 0 Therefore, our supposing the contrary is not true. That is, limn supk≥n Xk ≥ 0.

From the lemma 1 we have, ξt ≥ ξt ≥ ξt a.s., which gives the proof of the theorem 2 by

the following well known method: Let ξ′t(ω) = ξt(ω) if ξt(ω) ≥ ξt(ω) and ξ′t(ω) = ξt(ω)
for other ω ∈ Ω. Then (ξ′t)t∈[0,1] is stochasticaly equivalent to (ξt)t∈[0,1], (ξ′s) = (ξs) for

all s ∈ L a.s. and limδ→0 sup|t−s|≤δ,s∈L ξ′s = limδ→0 sup|t−s|≤δ,s∈L ξs = ξt and ξ′t ≥ ξ′t ≥ ξ′t.
Therefore, (ξ′t)t∈[0,1] is L-separable.

3. Stochastic integration in C[0, 1]. Let (ξt)t∈[0,1] be such that sups Eξt(ω, s)2 <
∞ for all t ∈ [0, 1], then we have a GRP Tt : C[0, 1]∗ → L2(Ω,B, P ), Ttϕ =∫ 1

0
ξt(ω, s)dϕ(s), Ttδs = ξt(ω, s). Let (wt)t∈[0,1] be a areal valued Wiener process, (Ft)t∈[0,1]

be a family of increasing σ-algebra such that a)wt is Ft-measurable for all t ∈ [0, 1]; b)
wS − wt is independent of the σ algebra Ft for all s > t. F0 contains all P -null sets
in B. Let ξt(ω, s) be nonanticipating and sups

∫ 1

0

∫
Ω

ξ2
t (ω, s)dpdt < ∞, then we can

define the stochastic integral
∫ 1

0
ξt(ω, s)dwt. Denote ηs :=

∫ 1

0
ξt(ω, s)dwt. The random

process (ηs)s∈[0,1] gives a GRE on C[0, 1], that is Tη : C[0, 1]∗ → L2(Ω,B, P ), Tη(δs) =∫ 1

0
ξt(ω, s)dwt. Therefore, we define the GSI for the wide class of GRP. The following

theorem gives the sufficient condition of existence of the stochastic integral (C[0, 1]-
valued random element)

Theorem 3. Let ξt(ω, s) be a nonanticipating GRP. If there exists α > 0, β > 0,

K > 0 such that E(
∫ 1

0
(ξt(ω, s) − ξt(ω, l))2dt)α/2 ≤ K|s − l|1+β, then there exists the

stochastic integral
∫ 1

0
ξt(ω, s)dwt in C[0, 1].

Proof. Consider the process
∫ 1

0
ξt(ω, s)dwt. Using Kolmogorov’s condition of conti-

nuity of the random process, we have E| ∫ 1

0
ξt(ω, s)dwt−

∫ 1

0
ξt(ω, l)dwt|α = E| ∫ 1

0
(ξt(ω, s)

− ξt(ω, l))dwt|α ≤ CαE(
∫ 1

0
(ξt(ω, s) − ξt(ω, l)2dt)α/2 ≤ CαK|s − l|1+β. Therefore, the

process ηs :=
∫ 1

0
ξt(ω, s)dwt has a. s. continuous sample paths. so, this is the random

element in C[0, 1].
Let now (Wt)t∈[0,1] be a Wiener process with values in C[0, 1] adapted to the

(Ft)t∈[0,1]. For all t, s, Wt(s) is a Gaussian random variable with mean 0 and corre-
lation function EWt(s)W

′
t(s

′) = min(t, t′)r(s, s′), where r(s, s′) is correlation function

of a Gaussian process with continuous sample paths. Consider the GSI
∫ 1

0
Wtdwt. The

following statement is true:
Corollary. The stochastic integral

∫ 1

0
Wtdwt exists in C[0, 1], if there exists

α > 0, β > o, K > 0 such that (r(t, t)− 2r(t, s) + r(s, s))α/2 ≤ K|t− s|1+β.

Proof. Denote the GSI ηs :=
∫ 1

0
Wt(s)dw(t). Let us now verify the Kolmogorov’s
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condition for ηs: E|ηs − η′s|α = E| ∫ 1

0
(Wt(ω, s) − Wt(ω, s′))dwt|α ≤ BαE(

∫ 1

0
(Wt(s) −

Wt(s
′))2dt)α/2. Let us now use the representation of the Wiener process in the Banach

space by the a.s. uniformly convergence series (see[7 ]), Wt =
∑∞

k=1

∫ t

0
ek(τ)dτξk, where

(ek)k∈N , k = 1, 2, . . . is orthonormal basis in L2[0, 1] and ξk, k = 1, 2, . . . are indepen-
dent, identically distributed Gaussian random elements in C[0, 1] such that Eξ = 0 and
Rξ = RW1 . That is E(ξk(s)−ξk(s

′))2 = E(W1(s)−W1(s
′))2 = r(s, s)−2r(s, s′)+r(s′, s′).

Therefore, ξk(s) − ξk(s
′) = (r(s, s) − 2r(s, s′) + r(s′, s′))1/2γk, where γk, k = 1, 2, . . .

are independent, standard Gaussian random variables. Then, it is easy to see that∑∞
k=1

∫ t

0
ek(τ)dτ(ξk(s)− ξk(s

′)) = (r(s, s)−2r(s, s′)+ r(s′, s′))1/2Bt, where Bt, t ∈ [0, 1]
is a real-valued Wiener process. Therefore, we have: E|ηs − η′s|α ≤ Bα(r(s, s) −
2r(s, s′) + r(s′, s′))α/2E(

∫ 1

0
B2

t (ω)dt)α/2 ≤ K ′|s − s′|1+β. Thus, ηs =
∫ 1

0
Wt(s)dw(t)

satisfies the Kolmogorov’s condition; therefore the stochastic integral as an element of
C[0, 1] exists.
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