SOLUTION TO NON-LOCAL PROBLEM FOR SMOOTH DOMAINS

Kapanadze D.

Institute of Geophysics

Abstract. The nonlocal boundary problem in the three-dimensional space is posed as follows. Let Ω be a simply connected domain belonging to $C^{(2,\alpha)}$, $\partial\Omega$ be the boundary of the domain, and let ω be a simply connected domain belonging to $C^{(2,\alpha)}$ such that $\overline{\omega} \subset \Omega$, $\partial\omega = S \in C^{(2,\alpha)}$. Let further $\zeta = Z(x)$ be a $C^{(2,\alpha)}$ -diffeomorphism from $\partial\Omega$ onto S. For any function $f \in C(\partial\Omega)$ we have to find a function $\varphi \in C(\partial\Omega)$ satisfying the boundary condition

$$\varphi(x) - K\varphi(x) = f(x), \quad x \in \partial\Omega,$$

where

$$K\varphi(x) = V(Z(x)), \ \Delta V(x) = 0, \ V(x) = \varphi(x), x \in \partial \Omega.$$

Let $\gamma_1 \in C^{(1,\alpha)}(S)$ be a positive density. Define the density γ_2 as follows

$$U^{\gamma_2}(x) = U^{\gamma_1}(x), \ x \in \mathbb{R}^3 \setminus \Omega, \ \gamma_2 \in C^{(1,\alpha)}(\partial\Omega).$$

Theorem. The non-local boundary problem (1) is solvable if and only if $f \in \gamma_2^{\perp}$, where γ_2^{\perp} is the annihilator, $\gamma_2^{\perp} \subset C(\partial\Omega)$.

Keywords and phrases: Non-local boundary problem, potential, density, Riesz-Schauder theory.

AMS subject classification (2000): 31B05.

Non-local boundary problems are considered in [1-6]. The non-local boundary problem in the three-dimensional space is posed as follows. Let Ω be a simply connected domain belonging to $C^{(2,\alpha)}$, $\partial\Omega$ be the boundary of the domain, and let ω be a simply connected domain belonging to $C^{(2,\alpha)}$ such that $\overline{\omega} \subset \Omega$, $\partial\omega = S \in C^{(2,\alpha)}$. Let further $\zeta = Z(x)$ be a $C^{(2,\alpha)}$ - diffeomorphism from $\partial\Omega$ onto S. For any function $f \in C(\partial\Omega)$ we have to find a function $\varphi \in C(\partial\Omega)$ satisfying the boundary condition

$$\varphi(x) - K\varphi(x) = f(x), \ x \in \partial\Omega, \tag{1}$$

where

$$K\varphi(x) = V(Z(x)) = -\int_{\partial\Omega} \frac{\partial G(Z(x), y)}{\partial \nu_y} \varphi(y) dS_y.$$

Here G is the Green function of the Dirichlet problem for the domain Ω , ν_x is the outer normal, $x \in \partial \Omega$.

Let us introduce necessary definitions.

The Newtonian volume potential and the double layer potential are defined as follows

$$V^{g}(x) = \int_{\Omega} \Gamma(x, y)g(y)dy, \quad U^{\psi}(x) = \int_{\partial\Omega} \Gamma(x, y)\psi(y)dS_{y},$$

$$g \in C(\Omega), \ \psi \in C(\partial \Omega), \ \Gamma(x,y) = |x-y|^{-1}.$$

Denote by γ_1 the density of the equilibrium potential for $S = \partial \omega$, i.e. $U^{\gamma_1}(x) = 1$, $x \in \overline{\omega}$, $\gamma_1 \in C^{(1,\alpha)}(S)$. The density $\gamma_2 \in C^{(1,\alpha)}(\partial \Omega)$ is defined by the equality

$$U^{\gamma_1} = U^{\gamma_2}(x), \ x \in \mathbb{R}^3 \setminus \Omega$$

Finally let us define the space B_2 of boundary functions:

$$B_2 = \left\{ f : f \in C(\partial\Omega), \quad \int_{\partial\Omega} f(x)\gamma_2(x)dS_x = 0 \right\}.$$

Theorem 1. The non-local boundary problem (1) is solvable if and only if $f \in B_2$.

Proof. Let us prove first that γ_2 is an eigen-function of the dual (compact) operator K^* . Indeed, by the definition of K we have

$$K^*\gamma_2(y) = -\int_{\partial\Omega} \frac{\partial G(Z(x), y)}{\partial \nu_y} \gamma_2(x) dS_x.$$

It is clear that the function

$$\frac{\partial G(\zeta, y)}{\partial \nu_y}$$

is harmonic with respect to $\zeta \in \Omega$ for any $y \in \partial \Omega$. Beside, the weak sense boundary value [5] is the Dirac measure $\delta_y, y \in \partial \Omega$. This is a consequence of the equality

$$\lim_{\zeta \to y_0} v(\zeta) = -\lim_{\zeta \to y_0} \int_{\partial \Omega} \frac{\partial G(\zeta, y)}{\partial \nu_y} \varphi(y) dS_y = \varphi(y_0) = (\delta_{y_0}, \varphi), \quad \varphi \in C(\partial \Omega).$$

According to the balayage principle [5]

$$K^*\gamma_2(y) = -\int_{\partial\Omega} \frac{\partial G(Z(x), y)}{\partial \nu_y} \gamma_2(x) dS_x = (\delta_y, \gamma_2') = (\delta_y, \gamma_2) = \gamma_2(y).$$
(2)

Since the support of γ_2 belongs to $\partial\Omega$, $\gamma'_2 = \gamma_2$. Therefore, $K^*\gamma_2 = \gamma_2$.

It is easy to see, by use of the principle of maximum for harmonic functions, that the homogeneous equation $\varphi - K\varphi = 0$ in the space B_2 has only the trivial solution $(\gamma_2(x) > 0, x \in \partial \Omega)$.

According to the Riesz-Schauder theory, the above results imply that the non-local boundary problem (1) is solvable if and only if $f \in B_2$.

Theorem 1 is proved.

Corollary 1. The non-local boundary problem (1) is solvable in the space B_2 if and only if the following equality of potentials holds:

$$\int_{S} \Gamma(x,\zeta)\gamma_2(Z^{-1}(\zeta))DZ^{-1}(\zeta)dS_{\zeta} = \int_{\partial\Omega} \Gamma(x,y)\gamma_2(y)dS_y, \ x \in \mathbb{R}^3 \setminus \Omega.$$

3

Corollary 2. Let $\Omega = \{x : |x| < 1\}$. ω be a simply connected domain belonging to $C^{(2,\alpha)}, \ \overline{\omega} \subset \Omega, \ \partial \omega = S, \ \zeta = Z(x) \in C^{(2,\alpha)}$. The non-local boundary problem (1) is solvable in the space

$$B_1 = \left\{ f : f \in C(\partial\Omega), \quad \int_{\partial\Omega} f(x) dS_x = 0 \right\}$$

if and only if $x_0 = (0, 0, 0) \in \omega$.

According to [6] Corollary 2 is a direct consequence of Theorem 1.

In conclusion let us consider an arbitrary positive density $\gamma_1 \in C^{(1,\alpha)}(S)$, where $S \subset \Omega, S \in C^{(2,\alpha)}, \ \Omega \in C^{(2,\alpha)}, \ \zeta = Z(x)$ is a $C^{(2,\alpha)}$ - diffeomorfism from $\partial\Omega$ on to S. Define the density γ_2 as follows

$$U^{\gamma_2}(x) = U^{\gamma_1}(x), \ x \in \mathbb{R}^3 \setminus \Omega, \ \gamma_2 \in C^{(1,\alpha)}(\partial\Omega).$$

It is easy to prove that $K^*\gamma_2 = \gamma_2$. Therefore, the non-local boundary problem (1) is solvable if and only if $f \in \gamma_2^{\perp}$, where γ_2^{\perp} is the annihilator, $\gamma_2^{\perp} \subset C(\partial\Omega)$.

REFERENCES

1. Bitsadze A.V., Samarskii A.A. On some simplest generalizations of linear elliptic problems, *Dokl. Akad. Nauk SSSR*, **185**, 4 (1969), 733-740 (in Russian).

2. Bitsadze A.V. Certain classes of partial differential equations, *Nauka, Moscow*, 1981 (in Russian).

3. Gordeziani D.G. Methods for solving a class of nonlocal boundary value problems, *Tbilis. Gos. Univ., Inst. Prikl. Mat., Tbilisi*, 1981 (in Russian).

4. Bitsadze A.V. To the theory of non-local boundary value problems, *Dokl. Akad. Nauk SSSR*, **277**, 1 (1984), 17-19 (in Russian).

5. Landskof N.S. Foundations of the modern potential theory, Nauka, Moscow, 1966 (in Russian).

6. Kapanadze D.V. Solvability of the non-local boundary problem and smoothness of the domain, *Differ. Uravn.*, **40**, 8 (2004), 1426-1429 (in Russian) English translation in *Differ. Equ.* **40**, 10 (2004),10, 1507–1511.

Received: 4.05.2008; revised: 8.09.2008; accepted: 6.10.2008.