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ON THE ABSOLUTE CONVERGENCE OF FOURIER SERIES WITH RESPECT
TO COMPLETE ORTHONORMAL SYSTEM
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Abstract. In the paper the sufficient and in some special cases, necessary conditions are
given for the absolute convergence of Fourier series with respect to orthonormal complete
systems.
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Let f ∈ L2(I), I = [0, 1]; assume that

{ϕk(x)}∞k=0 (1)

is an orthonormal complete in L2(I) system, and let

∞∑

k=0

ck(f)ϕk(x)

be the Fourier series of the function f with respect to system (1).
It will be said (see [1]) that the sequence of non-negative numbers (γk) belongs to

the class Aα, α ≥ 1, if there exists κα > 0 such that for any natural n

( 2n+1∑

k=2n+1

γα
k

) 1
α

≤ κα2n 1−α
α

2n∑

k=2n−1+1

γk.

If

max
2n<k≤2n+1

γk ≤ κ 2−n

2n∑

k=2n−1+1

γk,

then the sequence (γk) will be said to belong to the class A∞. It is easily seen that if
α1 > α2, then A∞ ⊂ Aα1 ⊂ Aα2 . Note that A ⊂ A∞, where A is the class of sequences,
introduced by P.L. Ul’yanov [2] in the following way: (γk) ∈ A if there exists κ ≥ 1
such that

max
2n<k≤2n+1

γk ≤ κ min
2n−1<κ≤2n

γk.

It is clear that if the sequence (γk) is monotone decreasing, then (γk) ∈ A.
The paper deals with convergence of the series

∞∑

k=0

|ck(f)|rγk. (2)
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We will now introduce the theorem in which the sufficient condition for series (2)
to be convergent is given.

Theorem 1. Let f ∈ L2(I), r ∈ (0, 2], {γk} ∈ A 2
2−r

. If the series

∞∑

k=1

Er
k(f)k−

r
2 γk (3)

is convergent, where Ek(f) is the best approximation of the function f by polynomials
of order ≤ k with respect to system (1) in the norm of the space L2(I), then series (2)
will be convergent.

This result when r = 1, γk = 1, was obtained by S. Stechkin [3], and when γk = kβ

for the trigonometric system, by A.A. Konyushkov [4].
In some special cases the inverse theorem of Theorem 1 is also valid, i.e. the

necessary conditions for the convergence of series (2) are found.
Theorem 2. Let f ∈ L2(I), r ∈ (0, 2], (|ck(f)|r) ∈ A 2

r
. If the series

∞∑

k=1

|ck(f)|r

is convergent, then the series
∞∑

k=1

Er
k(f)k−

r
2

will also be convergent.
When r = 1 and the sequence (|ck(f)|) is monotone decreasing, Theorem 2 was

obtained by S.B. Stechkin [3].
Let

Γk =
2k+1∑

n=2k+1

γn.

Theorem 3. Let f ∈ L2(I), r ∈ (0, 2], (|ck(f)|r) ∈ A∞ and for some β > r the
sequence Γk2

−β n
2 is non-increasing.

If series (2) is convergent, then series (3) will also be convergent.
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