
Seminar of I. Vekua Institute
of Applied Mathematics
REPORTS, Vol. 34, 2008

ONE-DIMENSIONAL BIN PACKING CLASS: FAST ALGORITHMS OF FINDING
THE BOUNDS OF OBJECTIVE FUNCTIONS

Fedulov G.

Institute of Analytical Technique

Abstract. We research a class of 16 combinatorial models, that are semantically near to
a known One-Dimensional Bin Packing task. All models have a large number of practical
applications in the different areas: an one-dimensional stock cutting, a placing of files to
CDs, a schedule theory, a placing of loads to the containers and so on. A general description
of class is to divide an initial set of weights into a some number of disjoint subsets with the
given properties, which are defined by using the model restrictions. Primary attention of
paper has been given to the estimation of quality of approximation solutions as a measure
of closeness to the optimal solutions. With that purpose, we build the bounds of objective
function which the approximation solutions are compared with. To find the bounds, we use
two blocks: a block to reduce the initial size of tasks and a block to build an estimation
corridor of reasonable solutions. A first block removes the dominate groups of weights (the
dominate pairs, triplets, quarters and so on) from the initial data. A second block estimates
the existence of reasonable solutions for a fixed number of subsets. Our algorithms for finding
the bounds can be used in practice for large-sizes tasks (the number of different weights may
be 50000 and more) as an alternative to other approaches when the time factor is important.

Keywords and phrases: Bin packing, approximation solution, lower bound, upper bound,
initial reduction, estimation corridor.

AMS subject classification (2000): 90C10.

1. Introduction

We research a class of 16 combinatorial models that are semantically near to a
known One-Dimensional Bin Packing (1DBP) problem [4]. All models have a large
practical applications in the different areas: One-Dimensional Stock Cutting, placing
of files on CDs, Scheduler Theory, a Container Loading and so on. A general descrip-
tion of class is following. Given a set of items A = {a1, a2, . . . , an}, to each item ak

corresponds a weight s(ak) and a profit(cost) p(ak), s(ak) ≥ s(ak+1). We need to divide
the initial set A into M disjoint subsets A1, A2, . . . , AM ,

⋃M
i=1 Ai = A, Ai ∩ Aj = ∅,

i 6= j, i, j ∈ [1,M] with the given properties. All subsets are independence ones
and a sequence of weights within each subset is any. We denote S(A) =

∑n
k=1 s(ak)

as a sum of weights A, Ci =
∑

ak∈Ai
s(ak) as a sum size of items (a bin content) of

ith bin and Pi =
∑

ak∈Ai
p(ak) as a sum profit(cost) of items of ith bin, i ∈ [1,M].

One can represent an initial set of weights {s(a1), s(a2), s(an)} in a compact form:
W = {w1 ◦ k1, w2 ◦ k2, · · · , wm ◦ km}, where w1 > w2 > · · · > wm , wi ◦ ki is a group
of equal weights wi , ki is a multiplacity,

∑m
i=1 ki = n,

∑m
i=1 kiwi = S(A). Thus, a pa-

rameter m is a number of different weights. Below we give a description of models

One-Dimensional Bin Packing Class: Fast Algorithms 75

of 1DBP class.

Model 0. Base Model. Given a fixed list of bins L = {B1, B2, . . . , BM}, Bi ≥
Bi+1, the Bi is a capacity of ith bin, S(L) ≥ S(A), where S(L) =

∑M
i=1 Bi. We need

to pack A into L: Ci ≤ Bi, i ∈ [1,M]. An answer is YES if we can pack A into L and
NO otherwise.

Model 1. Classical Bin Packing. To divide A into a minimal number M of
disjoint subsets: Ci ≤ B, i ∈ [1,M], B is a bin capacity.

Model 2. Bin Covering. To divide A into a maximal number M of disjoint
subsets: Ci ≥ B, i ∈ [1,M], B is a bin quota.

Model 3. Bin Packing & Bin Covering 1. To divide A into a minimal
number M of disjoint subsets: Bmin ≤ Ci ≤ Bmax, i ∈ [1,M], where the parameters
Bmin and Bmax are the lower and upper thresholds respectively.

Model 4. Bin Packing & Bin Covering 2. Model 4 is similar to Model 3
but it is need to find a maximal number M .

Model 5. Schedule Theory. M is fixed. To find a minimal bin size B in order
to divide A into M of disjoint subsets: Ci ≤ B, i ∈ [1,M].

Model 6. Schedule Theory (General Model 5). Given a list τ1, τ2, . . . τM of
positive real numbers. It is need to find a minimal positive integral number T in
order to pack A into a list of bins L = {B1, B2, . . . BM}: Ci ≤ Bi, i ∈ [1,M], Bi = Tτi.

Model 7. Bin Packing with a range of B. Given a range [Bmin, Bmax] of
bin capacities. It is need to find an optimal bin capacity B in order to a product
MB → min , where M is a solution of Model 1.

Model 8. Bin Packing with the decreasing bin capacities. Given a decreas-
ing sequence of bins B1 ≥ B2 ≥ · · · ≥ Bq. It is need to find a minimal number M ≤ q
in order to pack A into a list of bins {B1, B2 . . . BM}: Ci ≤ Bi, i ∈ [1,M].

Model 9. Maximal loading of weights. Given a fixed list of bins L =
{B1, B2 . . . BM}, where S(A) ≥ S(B), where S(B) =

∑n
i=1 Bi. It is need to find a

subset A′ ⊆ A in order to pack A′ into L: C ′
i ≤ Bi, i ∈ [1,M] and a sum weight

S(A′) → max.
Model 10. Maximal loading of profits (General model 9). Model 10 is

similar to Model 9 but it is need to find a subset A′: sum profit S(P ′) → max.
Model 11. Minimal loading of weights Model 11 is similar to Model 9 but

it is need to find a subset A′: C ′
i ≥ Bi, i ∈ [1,M] and a sum weight S(A′) → min.

Model 12. Minimal loading of costs (General Model 11). Model 12 is
similar to Model 11 but it is need to find a subset A′: a sum cost S(P ′) → min.

Model 13. Minimal sum capacity of subset of bins. Given a list of bins
L = {B1, B2, . . . BM}, where S(A) ≤ S(L). It is need to find a subset L′ ⊆ L in order
to pack A into L′: a sum bin capacity S(L′) → min.

Model 14. Minimal sum cost of subset of bins (General Model 13). Given
a list of bins L = {B1, B2, . . . BM}. Each bin Bi has a cost P i. Model 14 is similar
to Model 13 but it is need to find a subset L′: a sum bin cost S(P ′) → min.

Model 15. Bin Packing with a range of multiplicities of weight. We con-
sider such W , where ki ∈ [kmin

i , kmax
i]. We fix ki and for a given bin capacity B and

solve Model 1. We need to find such ki in order a sum waste MB − S(W) → min,

76 Fedulov G.

where S(W) =
∑m

i=1 wiki.

All initial data are the positive integer numbers. Here we have presented the known
models from [2,3,6] (and the other sources) and new models as 3,4,8,14. The Models
1-15 are the optimization ones that is led to Model 0 in process of solving. All models
are the NP-hard problems to find the optimal solutions OPT (D) for an arbitrary initial
data D and are solved in practice as rule using the approximation algorithms . Let we
have some approximation algorithm A that produces an approximation solution A(D)
that it is necessary to evaluate somehow. A measure of closeness A(D) to OPT (D)

is q = A(D)−OPT (D)
OPT (D)

100%. But finding of OPT (D) is NP-hard problem and as rule

OPT (D) is not known. In this case we find the bounds of objective function: a lower
bound LB(D) to OPT (D) for the tasks “to minimum” and an upper bound UB(D)
to OPT (D) for the tasks “to maximum”. One can write UB(D) = A(D) for the
tasks “to minimum” and LB(D) = A(D) for the tasks “to maximum”. Thus we
get LB(D) ≤ OPT (D) ≤ UB(D). Since OPT (D) is not known, we consider other

measure p = UB(D)−LB(D)
LB(D)

100%, where p ≥ q. In case p = 0 we claim A(D)=OPT (D).
Thus, finding the best bounds has the large practice importance.

At the moment is most known Model 1 to that is devoted many publications.
This problem lets to develop a large number of the different heuristic approximation
algorithms A. Among these algorithms there are a large interest to the such ones
where one can evaluate a behavior of algorithm in worst case for all initial data by
formula A(D) ≤ αOPT (D) + β. where α and β are the real constants, α ≥ 1. As
example, for a known fast algorithm FFD (First Fit by Decreasing) in [5] is proved a
result FFD(A) ≤ 11

9
OPT (A) + 4. A complexity of FFD is O(m2). But a number of

like algorithms is not very many. Most of effective algorithms no have the theoretical
results of worst case. Here we ask: how to evaluate a worse case (to find the asymptotic
constant α) of algorithm A by experimental way? We suppose a rough decision would
be following. For a fixed n we present a limited number of N ranges ∆i(n) = [ρi, σi], 0 <
ρi < σi < 1, ρi < 1

2
, i ∈ [1, N]. For each range ∆i(n) we generate the different

random distribution types (e.g. a uniform distribution) very many times. For each kth
distribution s(aj) ∈ [ρiB, σiB], j ∈ [1, n], we find A(D), LB(D) and set pk

i (n) := p.
Then pmax

i (n) = max
k

pk
i (n) will be a worst case of all pk

i (n) for a range ∆i(n). We

define p(n) = max
i

pmax
i (n) and state an experimental result as α′(n) = 1 + p(n)/100

that shows a primary opinion about the real α, where α′(n) ≤ α or α′(n) > α. At
present a best lower bound for Model 1 is an LP (A) that is found using a Linear
Programming technique. In [7] are spoken a hypothesis that OPT (A)−LP (A) ≤ 1 for
all initial data D since no one instance has been discovered with OPT (D)−LP (D) = 2
yet. It follows the LP -bound is a near-optimal one. But a complexity of finding LP -
bound increases dramatically with m. In [1] there are the tables of experiments for the
different groups of initial data where in particular for a range of weights (B/4, B/2] and
m = 3200, n = 1, 000, 000 the total LP -runtime is about 100 hours . Thus, using LP -
method for the largest parameters m is impossible in practice. But we must observe
that a structure of LP -approach doesn’t let to break a process to a given moment since
LP -bound may be incorrect. That is, to get a correct lower bound by LP -method it

One-Dimensional Bin Packing Class: Fast Algorithms 77

is necessary to wait a finish of LP -program. In order words, the LP -approach lets to
find the near-optimal lower bounds for the large m by expensive price. To reduce the
total runtime is used a grouping method. An idea of method is we change an initial
data W to a data W ′ with a less number m′ < m (we can represent W and W ′ as
the break-lines {s(ak)} and {s′(ak)} respectively, s′(ak) ≤ s(ak), k ∈ [1, n]). But a
difference d = LP (W) − LP (W ′) can be essential: the less m′ the more d. Thus is
actual the approaches to find the both fast and quality lower bounds for the large m.
In our paper we propose one of such approaches to solve this problem.

Our estimation technique is of the two blocks: the initial reduction and estimate
corridor. The first block removes the dominate groups of weights from the initial data D
and produces the initial reduction of two types. The first type (A-type) is used only for
Model 1 by a formula: OPT (A) = M0+OPT (A′),M0 = M1+M2+M3+M4+· · ·+MH ,
where M1, M2, M3, M4, . . .MH are the numbers of the dominate singletons, pairs,
triplets, quarters, . . . respectively, M0 is a number of bins reduced, A′ = A \ A0, A0 =⋃H

i=1 Ai, Ai =
⋃Mi

j=1 Ai
j, H := H(B) is a maximal number of weights to put into a bin

of capacity B. A singleton is a bin of one weight, a pair is a bin of the two weights,
a triplet is a bin of the three weights and so on. Each subset Ai

j is a dominate group
of i weights. Here A1, A2, A3, A4, . . . AH are the lists of the dominate singletons, pairs,
triplets, quarters, . . . respectively. The second type (B-type) is the general one for all
models and is used to solve Model 0 by a formula: (A,L) → (A′, L′). Here we lead
an initial data (A, L) to a data (A′, L′). The second block estimates an existence of
reasonable solutions for a fixed number (M) of subsets. This block solves a problem:
does exist a packing A into M bins: 0 < Bmin

i ≤ Ci ≤ Bmax
i ≤ Bi, i ∈ [1,M]? We

define a predicate P (A,Bmin, Bmax) =NO, if we claim ”packing A into L doesn’t exist”
and P (A,Bmin, Bmax) =YES otherwise. A result of solving it problem is an estimate
corridor [Cmin

i , Cmax
i] : Bmin

i ≤ Cmin
i ≤ Ci ≤ Cmax

i ≤ Bmax
i , i ∈ [1,M]. These blocks are

interlinked closely. The results of the first block are used in the second block and vice
versa.

In Section 2 we describe the initial reduction algorithms. In Section 3 we describe
the algorithms of building the estimation corridor. In Section 4 we give the procedures
of building the bounds for our models. In Section 5 we give the experimental results.

2. Initial reduction

2.1 A-type initial reduction

Definition 1. We call a group G = {aNk(i)}, Nk(i) = Nk−1(i) + 1, k ∈ [1, i]

as a dominate one, if a number p := N1(i) has a property:
∑p−k+1

k=p s(ak) ≤ B,∑p+i−2
k=p−1 s(ak) > B, where N0(i) := N1(i)− 1 is a number of items before ap.
Here N1(1) defines a number for the dominate singletons, N1(2) for the dominate

pairs, N1(3) for the dominate triplets, N1(4) for the dominate quarters and so on. If an
optimum solution has at least one group G′ = {aN ′

k(i)}, k ∈ [1, i], where N ′
1(i) ≥ N1(i),

then we can remove G from A and put G into A0 since s(aNk(i)) ≥ s(aN ′
k(i)) because of

N ′
k(i) > Nk(i), k ∈ [1, i].

78 Fedulov G.

Algorithm A to build A0.
1. A0 := ∅, A′ := A, M :=P(A′).
2. i := 0, µ(0) := 0.
3. i := i + 1.
4. M ′ := M − µ(i− 1). If (M ′ = 0) STOP.
5. Algorithms A2 and A3 to find G.
6. If G 6= ∅ { A0 := A0

⋃
G, A′ := A′ \G, M :=P(A′) }.

7. Algorithm A1 to find µ(i).
8. Go to 2.

Here P(A′) is an algorithm that produces a bound M : minM P (A′, Bmin, Bmax)=YES,
Bmin

i = wm, Bmax
i = B, i ∈ [1,M], µ(i− 1) is a maximal number of bins that can be

used by weights of range [1, N0(i)], µ(i− 1) ≤ N0(i). The algorithms A1 and A2 try
to find G.

Algorithm A1 to find µ(i) We will find µ(i) by using a formula µ(1) = N0(2),
µ(i) = µ(i− 1) + x(i), i ≥ 2, where x(i) is a maximal number of bins that can use x(i)
weights from a range ∆(i) = [N1(i), N0(i + 1)], x(i) ≤ k0 = N0(i + 1) − N1(i) + 1.
We ask: can we put each weight of ∆(i) into a personal bin? Suppose we have put
k weights of ∆(i) into k bins. We consider a sum of the first k weights of ∆(i) as

S1(k) =
∑N1(i)+k−1

j=N1(i) s(aj) and a sum of ik easiest weights as S2(k) =
∑n

j=n−ik+1 s(aj).

If S1(k) + S2(k) > kB then at least one of k bins will be have not more i weights.
As any group {s(aJ1), s(aJ2), . . . s(aJi

)} is dominated by G, J1, J2, . . . , Ji ∈ ∆(i), we
can not use k bins by k weights of ∆(i). Because of we have the two cases: to put
the kth weight of ∆(i) into a bin of µ(i − 1) bins where we have put the weights
s(aj), j ∈ [1, N0(i)] or to join the kth weight with one of previous k − 1 weights s(aj),
j ∈ [µ(i− 1)+1, µ(i− 1)+k− 1]. The other details we put to an algorithm of building
x(i).

We denote S1(i, q) =
∑n

j=n−iq+1 s(aj) and S2(q) = qB.

Algorithm to find x(i)
1. x(i) := 0, k0 := N0(i), k := k0, p := 0.
2. k := k + 1, q = k − k0. If (k > N0(i + 1)) STOP

3. If
(∑k

j=k0+1 s(aj) + S1(i, q) ≤ S2(q)
)
{x(i) := x(i) + 1}

else { p := p + 1, k0 := k0 + 1, If (p = i) {x(i) := x(i) + 1, p := 0} }.
4. Go to 2.

Algorithm A2 to build A0. We consider a number M ′ of bins of range [1, µ(i−1)]. Let
an algorithm packs a maximum number K of the weights s(aj) into M ′ bins, K ≥ M ′,
j ∈ [1, K]. It follows we can put not more n − K weights into M −M ′ bins since a
set of weights {s(a1), . . . , s(aK)} dominates any set of K weights {s(aJ1), . . . , s(aJk

)}
since s(ak) ≥ s(aJk

), k ∈ [1, K]. If n − K < (i + 1)(M − M ′) it follows we find at
least one group of i weights to put into a bin from M − M ′ bins. If we get a result
n−K < (i + 1)(M −M ′) for all M ′ ∈ [1, µ(i− 1)] then we can remove the dominate
group G from A and put G into A0.

One-Dimensional Bin Packing Class: Fast Algorithms 79

Algorithm A3 to build A0. Let a difference M ′′ = M −µ(i− 1) > 0. It follows: each
bin of range ∆ = [N1(i), N1(i) + M ′′ − 1] has the weights with the numbers j ≥ N1(i).
We consider any k ∈ ∆ and ask: can we put k weights {s(aj)}, j ∈ [N1(i), N1(i)+k−1]
into k bins? In other words: can we put only one weight into each bin? In this case each
bin have to get not less i + 1 weights. We denote S1(k) =

∑N1(i)+k−1
j=N1(i) s(aj) as sum of k

weights and S2(k) =
∑n

j=n−ik+1 s(aj) as sum of ik easiest weights. If S1(k)+S2(k) > kB
then at least one of k bins must get a group of i weights of range ∆. As any i-
group {s(aj1), s(aj2), . . . s(aji

)} is dominated by {s(aN1(i), s(aN1(i)+1, . . . s(aN1(i)+i−1)},
j1, j2, . . . ji ∈ ∆, we claim: we can’t put k weights into k bins. Now we want to know:
can we put k weights s(aj) into k′ ∈ [1, k] bins? Again, each bin have to get not less
i + 1 weights. We denote S2(k

′) =
∑n

j=n−k′(i+1)+k+1 s(aj). If S1(k) + S2(k
′) > k′B

then at least one of k′ bins gets not more i weights of range ∆. If we get a result
S1(k) + S2(k

′) > k′B for all k′ ∈ [1, k] for a fixed k ∈ [1,M ′′], then we can remove the
dominate group G from A and put G into A0.

2.2 B-type initial reduction

Let we given by the constraints Bi ≥ Bmin
i , i ∈ [1,M]. We will use a parameter par

as 1 in case Bmin 6= ∅ and as 0 otherwise. Now we consider a group G and a range of
bins Bi, i ∈ [q, Q]. Let P (q) is a minimal number: s(aP (q)) ≤ Bq, s(aP (q)−1) > Bq. Let∑p+i−1

j=p s(aj) ≤ BQ, p := N1(i), here N1(i) we form for B := BQ, i = 1, 2, . . . H(B).
Let a difference M ′′ = Q− q + 1− µ(i− 1) > 0.

Algorithm B2. We consider a number M ′ of bins of range [1, µ(i− 1)]. We build B′

as a set of bins as following: B′
i = Bi, i ∈ [1, q−1], B′

i = 0, i ∈ [q, q−1+M ′], B′
i = Bi,

i ∈ [q + M ′,M]. Let an algorithm packs a dominate set of weights D(K) = {s(aI1),
s(aI2), . . . , s(aIK

)} into B′ bins and a number K is maximal. It follows any set
D′(K) = {s(aJ1), s(aJ2), . . . , s(aJK

)} of K weights that we can put into B′ bins will
be dominated by D(K): s(aIk

) ≥ s(aJk
), k ∈ [1, K]. Then n − K will be a maximal

number of weights that we can put into the bins Bi, i ∈ [q, Q−M ′]. If we get a result
n − K < (i + 1)(Q − q + 1 − M ′) for all M ′ ∈ [1, µ(i − 1)] then we can remove the
dominate group G from A and put G into BQ, after we remove G and BQ from the
initial A and L and set A′ := A \G, L′ := L \BQ.

Algorithm B3. We define a set of numbers J = {1, 2, . . . n} \ {I1, I2, . . . , IK} that we

can use as the numbers for the easiest weights. We denote S1(k) =
∑N1(i)+k−1

j=N1(i) s(aj) as a

sum of k heaviest weights from a range [N1(i), N1(i) + M ′′ − 1], S2(k
′) =∑n

j=n−k′(i+1)+k+1 s(aIj
) as a sum of ik′ easiest weights and S3(k

′) =
∑q+k′−1

i=q Bi as a sum

of k′ heaviest bins of range [q,Q], k′ ∈ [1, k]. If we get a result S1(k) + S2(k
′) > S3(k

′)
for all k′ ∈ [1, k] for a fixed k ∈ [1,M ′′], then we can remove G from A and put into
BQ, after we set A′ := A \G and L′ := L \BQ.

Algorithm B(par).
1. A′ := A, L′ := L.
2. q := 0, G := ∅.

80 Fedulov G.

3. q := q + 1. If (q > M) return 1.
To build N1(i) for the B := BQ, i = 1, 2, . . . H(B).
If (P (q) = P (q − 1)) Go to 3.

4. Q := q − 1.
5. Q := Q + 1. If (Q > M) Go to 3.

If (BQ = BQ+1) Go to 5.
6. i := 0, µ(0) := 0.
7. i := i + 1.
8. M ′ := Q− q + 1− µ(i− 1). If (M ′ = 0) Go to 5.
9. Algorithms B2 and B3 to find G.
10. If (G 6= ∅) {

If (par = 1) { If (sum(G) < minq≤j≤Q Bmin
j) return 0 else Go to 11 }.

Build A′ := A′ \G and L′ := L′ \BQ.
If (P (A′, L′)=NO) return 0 else Go to 2. }

11. Algorithm A1(B := Bq) to find µ(i).
12. Go to 7.

3. Estimation corridor

We denote λ(h,H) as a maximal number of disjoint subsets that one can get from
the initial A in order to a sum of weights in each subset would belong to a range [h,B].
As a problem of finding of λ(h, H) is NP-hard in the strong sense, we will find an upper
bound ν(h,H) ≥ λ(h, H). Below we give a recursive algorithm A4 to build ν(h,H).

Algorithm A4
1. A′ := A,A+ := ∅, s := 0, z0 := 0, ν(h,H) := 0.
2. For x = h To H
3. y:=0
4. For k = 1 To n
5. If (∃A′′ ⊆ A′: h ≤ ∑

aj∈A′′ s(aj) + s(ak) ≤ x)

6. { y := y + s(ak), s := s + s(ak), A′ := A′ \ ak, A+ := A+
⋃

ak }.
7. End
8. λ := by/xc.
9. While (λ > 0)
10. If (P (H, x, s, λ) = 0) { λ := λ− 1 } else Break While.
11. End While
12. ν(h,H) := ν(h,H) + λ, zx := λ.
13. End
14. STOP

Algorithm P (H, x, s, λ)
1. K := ν(h,H) + λ, A := A+,M := K + 1.
2. Bmax

i := x, Bmin
i := h, i = 1, 2, . . . K,

Bmax
K+1 := s− λx−∑x−1

i=1 zii, Bmin
K+1 := max{s−Kx, 0}.

3. If (Algorithm B(0) = 0) return 0.

One-Dimensional Bin Packing Class: Fast Algorithms 81

4. If (Algorithm B(1) = 0) return 0.
5. return 1.

Now we define:
An operator P+(h,H, x) = W+ = {w+

i ◦ k+
i }, where w+

i = H − i + 1,
k+

i = ν(H − i + 1, H)− ν(H − i + 2, H), i ∈ [1, p], k+
p = x− ν(H − p + 2, H),

k+
p < ν(H − p + 1, H)− ν(H − p + 2, H),

∑p
i=1 k+

i = x, ν(H + 1, H) := 0,
a sum S+(h,H, x) =

∑p
i=1 k+

i w+
i , w+

p < h ⇒ S+(h,H, x) := 0, C+ = {C+
j } as

C+
j = H, j ∈ [

1, k+
1

]
,

C+
j = H − 1, j ∈ [

k+
1 + 1, k+

1 + k+
2

]
, . . .

C+
j = H − p + 1, j ∈ [∑p−1

i=1 k+
i + 1,

∑p
i=1 k+

i

]
.

An operator P−(h,H, x) = W− = {w−
i ◦ k−i } , where w−

i = h + i− 1,
k+

i = ν(h + i− 1, h)− ν(h + i− 2, h), i ∈ [1, p], k−p := x− ν(h + p− 2, h),
k−p < ν(h + p− 1, h)− ν(h + p− 2, h),

∑p
i=1 k−i = x, ν(h− 1, h) := 0,

a sum S−(h,H, x) =
∑p

i=1 k−i w−
i , w−

p > H ⇒ S−(h,H, x) := ∞, C− = {C−
j } as

C−
j = h + p− 1, j ∈ [

1, k−1
]
,

C−
j = h + p− 2, j ∈ [

k−1 + 1, k−1 + k−2
]
, . . .

C−
j = h, j ∈ [∑p−1

i=1 k−i + 1,
∑p

i=1 k−i
]
.

Algorithm A5 to build the corridor [Cmin, Cmax].
1. Cmin

i := Bmin
i , Cmax

i := Bmax
i , i = 1, 2, . . .M

2. i := 0, REP := 0.
3. i := i + 1. If (i > M) Go to 6. g := Cmax

i .
4. Cmax

i := maxh { Cmin
i ≤ h ≤ min(g, Cmax

i−1) : C−
j ≤ Cmax

j , j = 1, 2, . . . i− 1,∑i
j=1 C−

j +
∑M

j=i+1 Cmin
j ≤ S(A) },

where C− = {C−
1 , C−

2 , . . . C−
i } = P−(Cmax

i , Cmax
1 , i).

5. If (Cmax
i < g) REP := 1. Go to 3.

6. i := M + 1.
7. i := i− 1. If (i < 1) { If (REP = 1) Go to 2 else STOP }. g := Cmin

i .
8. Cmin

i := minh { Cmin
i ≤ h ≤ Cmax

i } : C+
i+j ≥ Cmin

i+j , j = 1, 2, . . .M − i,∑i−1
j=1 Cmax

i +
∑M−i+1

j=1 C+
i ≥ S(A) },

where C+ = {C+
1 , C+

2 , . . . C+
M−i+1} = P+(Cmin

M , Cmin
i , M − i + 1).

9. If (Cmin
i > g) REP := 1. Go to 7.

4. Building the bounds for the 1DBP class

Here we give building the bounds only for the first 7 models from the 1DBP class.

Model 0.
a. Lead (A,L) to (A′, L′) using the algorithm B(0). Set A := A′ and L := L′.
b. Answer is a result of B(0), where Bmax

i := Bi, i = 1, 2, . . . M , M = |L′|.

Model 1.
a. Lead A to A0 using the algorithm A.Set A′ := A \ A0.
b. Answer is LB(A) := P (A′).

82 Fedulov G.

Model 2.
For M = bS(A)/Bc To 1 By -1

a. Set Bmin
i := B, Bmax

i := S(A), i = 1, 2, . . . M .
b. If (B(0)=0) continue For. If (B(1)=0) continue For.
c. Answer is UB(A) := M . STOP.

End

Model 3.
For M = bS(A)/Bc To S(A)

a. Set Bmin
i := Bmin, Bmax

i := Bmax, i = 1, 2, . . . M .
b. If (B(0)=0) continue For. If (B(1)=0) continue For.
c. Answer is LB(A) := M . STOP.

End

Model 4.
For M = bS(A)/Bc To 1 By -1

a. Set Bmin
i := Bmin, Bmax

i := Bmax, i = 1, 2, . . . M .
b. If (B(0)=0) continue For. If (B(1)=0) continue For.
c. Answer is UB(A) := M . STOP.

End

Model 5.
For B = dS(A)/Me To S(A)

a. Set Bmin
i := wm, Bmax

i := B, i = 1, 2, . . . M .
b. If (B(0)=0) continue For.
c. Answer is LB(A) := B. STOP.

End

Model 6.
For T = 1 To S(A)

a. Set Bmin
i := wm, Bmax

i := τiT , i = 1, 2, . . .M .
b. If (B(0)=0) continue For.
c. Answer is LB(A) := T . STOP.

End

5. Experimental results

Our program is written in Microsoft Visual C++. We performed our experiments
on computer Intel/Core2 Duo/E6400 2,13GHz,2Gb RAM. Here we present our results
only for the Model 1. We used a fastest mode to get A0 and a lower bound LB(A) =
M0 + dS(A′)/Be, A′ = A \ A0, using the algorithm A. Our purpose was to evaluate
a quality of LB(A). We developed new fast approximation algorithm FG to get the
upper bound FG(A) to OPT (A) and measure of quality of LB(A) (and FG(A) too)

as p = FG(A)−LB(A)
LB(A)

100%.

One-Dimensional Bin Packing Class: Fast Algorithms 83

Algorithm FG
1. Find A0 and M0 by algorithm A. Set A′′ := A \ A0.
2. Set the initial a := dS(A′′)/Be and b := FFD(A′′).
3. While (b > a)
4. Set A := A′′, M := a + (b− a)/2, L := {Bi}, Bi = B, i = 1, 2, . . . M .
5. If (B(0) = 0) { Set a := M + 1; Continue While }
6. Lead (A,L) → (A′, L′) during B, set A := A′, L := L′, n := |A′|, M ′ := |L′|.
7. Find k0 = max

i
{ s(ai) + s(ai+1) + s(an) > B }, set BM ′−i+1 := B − s(ai),

i = 1, 2, . . . k0.
8. For k = k0 + 1 To n
9. For i = M ′ To 1 By -1
10. Set gap := Bi − s(ak). If (gap < s(an)) continue For i
11. If (Bi < B) { Find a maximal s(ap) ≤ gap,
13. Set A := A \ {ak

⋃
ap}, L := L \Bi }.

14. else { Set Bi := B − s(ak), A := A \ ak }.
15. Sort L by decreasing: Bi ≥ Bi+1, Break For i (continue For k)
16. End For i
17. If (Bi − s(ak) < s(an)) for all i ∈ [1,M ′] { Set a := M + 1, continue While}.
18. End For k
19. Set b := M , continue While.
20. End While
21. Set FG(A) := M0 + b. STOP.

The test instances we created using a random distribution generator BS(ρB, B/2, B,m)
from [1]. The first series of experiments was for the ranges (ρ,B/2], ρ = 0.25, 0.24, . . . 0.16.
Our parameters were m = n = 10000 and B = 109. We denote M0 = dS(A)/Be.

ρ |A0|
n

100% LB(A)−M0

M0 100% FG(A)−LB(A)
LB(A)

100% FFD(A)−LB(A)
LB(A)

100% FG(A) time

sec
0.25 34.66 3.933 0.102 6.903 176
0.24 26.32 2.500 0.185 7.264 176
0.23 24.34 2.186 0.160 6.873 188
0.22 19.90 1.439 0.109 6.848 435
0.21 14.80 0.901 0.391 6.788 1037
0.20 10.48 9.458 0.485 6.500 1180
0.19 7.12 0.232 0.695 6.000 843
0.18 4.12 0.059 0.823 5.530 1565
0.17 1.48 0.000 1.040 4.070 1506
0.16 0.00 0.000 1.240 4.540 4075

The second series of experiments was for a range (B/4, B/2], B = 109 and
m = n ∈ [10000, 50000].

84 Fedulov G.

m = n 10000 15000 20000 25000 30000 35000 50000
LB(A) time 0 1 1 3 3 4 8

sec
FG(A) time 176 757 1850 2387 7690 7894 24655

sec

The third series of experiments was for a range (B/4, B/2], B = 106, B = 109

and m = n = 1000, 1500, 2000. For m = n = 1000 ∧ B = 106 we generated the 18
test instances, for m = n = 1500 ∧ B = 109 the 6 test instances and for m = n =
1500 ∧ B = 109 the 6 test instances. We wish to know how often can appear the
optimal solutions. We saw the optimal solutions arrived about in the 50% cases for
m = n = 1000 and less 50% for the others m = n.

The forth series of experiments was for a range (B/4, B/2] and m = n = 700.
Here we wished to know about k = LP (A)/LP (A′), where we recall A′ = A \ A0. We
sent a query to both G.Belov and G.Scheithauer from Dresden Technology University
(DTU) to solve the 6 test instances. The first instance A(1) was for B = 10000.
The second instance was A(2) := A′(1) = A(1) \ A0(1) with |A(1)0| = 338 (the 119
dominate pairs). The third instance A(3) was for B = 50000. The forth was as
A(4) := A′(3) = A(3) \ A0(3) with |A0(3)| = 208 (the 104 dominate pairs). Fifth
instance was for B = 50000. The sixth instance was as A(6) := A′(5) = A(5) \ A0(5)
with |A0(5)| = 226 (the 113 dominate pairs). We got the following results from DTU
to our query:

LP (A(1)) = 1774 sec, LP (A(2)) = 925 sec, k = 1774/ 925 = 1.9178.
LP (A(3)) = 1935 sec, LP (A(4)) = 1086 sec, k = 1935/1086 = 1.7818.
LP (A(5)) = 1952 sec, LP (A(6)) = 1013 sec, k = 1952/1013 = 1.9269.

Thus, for these 6 instances we have a result: an LP -time(A′) of the reduced in-
stances faster about 2 times than an LP -time(A) of the original instances.

R E F E R E N C E S

1. Applegate D., Buriol L., Dillard B., Johnson D. and Shor P. The Cutting-Stock Approach to Bin
Packing: Theory and Experiments, In Proceedings of the Fifth Workshop on Algorithm Engineering
and Experimentation, R.E. Ladner (Editor), SIAM, 2003, pp. 1-15.

2. Fedulov G. One-dimensional bin packing class: fast algorithms to find the bounds of objective
functions, Georgian Engineering News, 2, (2008), 42-47.

3. Fukunaga A. Bin Completion Algorithms for Multicontauner Packibg, Knapsack, and Covering
Problems, Journal of Artifical Intelligence 28, (2007), 393-429.

4. Garey M. and Johnson D. Computers and intractability: A Guide to the theory of NP-
Completeness, W.H. Freeman and Company, 1979.

5. Johnson D. Fast Algorithm for Bin Packing, Journal of Computer and System Sciences,
8, (1974), 272-314.

6. Martello S. and Toth P. Knapsack Problems, John Wiley and Sons, 1990.
7. Scheithauer G. and Terno J. Theoretical investigations on the modified integer round-up

property for the one-dimensional cutting stock problem. Oper. Res. Lett., 20, (1997), 93-100.

Received: 25.06.2008; revised: 27.10.2008; accepted: 26.11.2008.

