ONE-DIMENSIONAL BIN PACKING CLASS: FAST ALGORITHMS OF FINDING THE BOUNDS OF OBJECTIVE FUNCTIONS

Fedulov G.
Institute of Analytical Technique

Abstract

We research a class of 16 combinatorial models, that are semantically near to a known One-Dimensional Bin Packing task. All models have a large number of practical applications in the different areas: an one-dimensional stock cutting, a placing of files to CDs, a schedule theory, a placing of loads to the containers and so on. A general description of class is to divide an initial set of weights into a some number of disjoint subsets with the given properties, which are defined by using the model restrictions. Primary attention of paper has been given to the estimation of quality of approximation solutions as a measure of closeness to the optimal solutions. With that purpose, we build the bounds of objective function which the approximation solutions are compared with. To find the bounds, we use two blocks: a block to reduce the initial size of tasks and a block to build an estimation corridor of reasonable solutions. A first block removes the dominate groups of weights (the dominate pairs, triplets, quarters and so on) from the initial data. A second block estimates the existence of reasonable solutions for a fixed number of subsets. Our algorithms for finding the bounds can be used in practice for large-sizes tasks (the number of different weights may be 50000 and more) as an alternative to other approaches when the time factor is important.

Keywords and phrases: Bin packing, approximation solution, lower bound, upper bound, initial reduction, estimation corridor.

AMS subject classification (2000): 90C10.

1. Introduction

We research a class of 16 combinatorial models that are semantically near to a known One-Dimensional Bin Packing (1DBP) problem [4]. All models have a large practical applications in the different areas: One-Dimensional Stock Cutting, placing of files on CDs, Scheduler Theory, a Container Loading and so on. A general description of class is following. Given a set of items $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, to each item a_{k} corresponds a weight $s\left(a_{k}\right)$ and a profit(cost) $p\left(a_{k}\right), s\left(a_{k}\right) \geq s\left(a_{k+1}\right)$. We need to divide the initial set A into M disjoint subsets $A_{1}, A_{2}, \ldots, A_{M}, \bigcup_{i=1}^{M} A_{i}=A, A_{i} \cap A_{j}=\emptyset$, $i \neq j, i, j \in[1, M]$ with the given properties. All subsets are independence ones and a sequence of weights within each subset is any. We denote $S(A)=\sum_{k=1}^{n} s\left(a_{k}\right)$ as a sum of weights $A, C_{i}=\sum_{a_{k} \in A_{i}} s\left(a_{k}\right)$ as a sum size of items (a bin content) of i th bin and $P_{i}=\sum_{a_{k} \in A_{i}} p\left(a_{k}\right)$ as a sum profit(cost) of items of i th bin, $i \in[1, M]$. One can represent an initial set of weights $\left\{s\left(a_{1}\right), s\left(a_{2}\right), s\left(a_{n}\right)\right\}$ in a compact form: $W=\left\{w_{1} \circ k_{1}, w_{2} \circ k_{2}, \cdots, w_{m} \circ k_{m}\right\}$, where $w_{1}>w_{2}>\cdots>w_{m}, w_{i} \circ k_{i}$ is a group of equal weights w_{i}, k_{i} is a multiplacity, $\sum_{i=1}^{m} k_{i}=n, \sum_{i=1}^{m} k_{i} w_{i}=S(A)$. Thus, a parameter m is a number of different weights. Below we give a description of models
of 1 DBP class.
Model 0. Base Model. Given a fixed list of bins $L=\left\{B_{1}, B_{2}, \ldots, B_{M}\right\}, B_{i} \geq$ B_{i+1}, the B_{i} is a capacity of i th bin, $S(L) \geq S(A)$, where $S(L)=\sum_{i=1}^{M} B_{i}$. We need to pack A into L : $C_{i} \leq B_{i}, i \in[1, M]$. An answer is YES if we can pack A into L and NO otherwise.

Model 1. Classical Bin Packing. To divide A into a minimal number M of disjoint subsets: $C_{i} \leq B, i \in[1, M], B$ is a bin capacity.

Model 2. Bin Covering. To divide A into a maximal number M of disjoint subsets: $C_{i} \geq B, i \in[1, M], B$ is a bin quota.

Model 3. Bin Packing \& Bin Covering 1. To divide A into a minimal number M of disjoint subsets: $B_{\min } \leq C_{i} \leq B_{\max }, i \in[1, M]$, where the parameters $B_{\text {min }}$ and $B_{\max }$ are the lower and upper thresholds respectively.

Model 4. Bin Packing \& Bin Covering 2. Model 4 is similar to Model 3 but it is need to find a maximal number M.

Model 5. Schedule Theory. M is fixed. To find a minimal bin size B in order to divide A into M of disjoint subsets: $C_{i} \leq B, i \in[1, M]$.

Model 6. Schedule Theory (General Model 5). Given a list $\tau_{1}, \tau_{2}, \ldots \tau_{M}$ of positive real numbers. It is need to find a minimal positive integral number T in order to pack A into a list of bins $L=\left\{B_{1}, B_{2}, \ldots B_{M}\right\}: C_{i} \leq B_{i}, i \in[1, M], B_{i}=T \tau_{i}$.

Model 7. Bin Packing with a range of B . Given a range $\left[B_{\min }, B_{\max }\right.$] of bin capacities. It is need to find an optimal bin capacity B in order to a product $M B \rightarrow \min$, where M is a solution of Model 1.

Model 8. Bin Packing with the decreasing bin capacities. Given a decreasing sequence of bins $B_{1} \geq B_{2} \geq \cdots \geq B_{q}$. It is need to find a minimal number $M \leq q$ in order to pack A into a list of bins $\left\{B_{1}, B_{2} \ldots B_{M}\right\}: C_{i} \leq B_{i}, i \in[1, M]$.

Model 9. Maximal loading of weights. Given a fixed list of bins $L=$ $\left\{B_{1}, B_{2} \ldots B_{M}\right\}$, where $S(A) \geq S(B)$, where $S(B)=\sum_{i=1}^{n} B_{i}$. It is need to find a subset $A^{\prime} \subseteq A$ in order to pack A^{\prime} into $L: C_{i}^{\prime} \leq B_{i}, i \in[1, M]$ and a sum weight $S\left(A^{\prime}\right) \rightarrow$ max.

Model 10. Maximal loading of profits (General model 9). Model 10 is similar to Model 9 but it is need to find a subset A^{\prime} : sum profit $S\left(P^{\prime}\right) \rightarrow \max$.

Model 11. Minimal loading of weights Model 11 is similar to Model 9 but it is need to find a subset $A^{\prime}: C_{i}^{\prime} \geq B_{i}, i \in[1, M]$ and a sum weight $S\left(A^{\prime}\right) \rightarrow$ min.

Model 12. Minimal loading of costs (General Model 11). Model 12 is similar to Model 11 but it is need to find a subset A^{\prime} : a sum $\operatorname{cost} S\left(P^{\prime}\right) \rightarrow \min$.

Model 13. Minimal sum capacity of subset of bins. Given a list of bins $L=\left\{B_{1}, B_{2}, \ldots B_{M}\right\}$, where $S(A) \leq S(L)$. It is need to find a subset $L^{\prime} \subseteq L$ in order to pack A into L^{\prime} : a sum bin capacity $S\left(L^{\prime}\right) \rightarrow \min$.

Model 14. Minimal sum cost of subset of bins (General Model 13). Given a list of bins $L=\left\{B_{1}, B_{2}, \ldots B_{M}\right\}$. Each bin B_{i} has a cost \mathcal{P}_{i}. Model 14 is similar to Model 13 but it is need to find a subset L^{\prime} : a sum bin cost $S\left(\mathcal{P}^{\prime}\right) \rightarrow \min$.

Model 15. Bin Packing with a range of multiplicities of weight. We consider such W, where $k_{i} \in\left[k_{i}^{\min }, k_{i}^{\max }\right]$. We fix k_{i} and for a given bin capacity B and solve Model 1. We need to find such k_{i} in order a sum waste $M B-S(W) \rightarrow \min$,
where $S(W)=\sum_{i=1}^{m} w_{i} k_{i}$.
All initial data are the positive integer numbers. Here we have presented the known models from [2,3,6] (and the other sources) and new models as 3,4,8,14. The Models $\mathbf{1 - 1 5}$ are the optimization ones that is led to Model $\mathbf{0}$ in process of solving. All models are the NP-hard problems to find the optimal solutions $\operatorname{OPT}(D)$ for an arbitrary initial data D and are solved in practice as rule using the approximation algorithms. Let we have some approximation algorithm \mathcal{A} that produces an approximation solution $\mathcal{A}(\mathcal{D})$ that it is necessary to evaluate somehow. A measure of closeness $\mathcal{A}(D)$ to $\operatorname{OPT}(D)$ is $q=\frac{\mathcal{A}(\mathcal{D})-\mathcal{O P T}(\mathcal{D})}{O P T(D)} 100 \%$. But finding of $O P T(D)$ is NP-hard problem and as rule $\operatorname{OPT}(D)$ is not known. In this case we find the bounds of objective function: a lower bound $L B(D)$ to $O P T(D)$ for the tasks "to minimum" and an upper bound $U B(D)$ to $\operatorname{OPT}(D)$ for the tasks "to maximum". One can write $U B(D)=\mathcal{A}(\mathcal{D})$ for the tasks "to minimum" and $L B(D)=\mathcal{A}(\mathcal{D})$ for the tasks "to maximum". Thus we get $L B(D) \leq O P T(D) \leq U B(D)$. Since $O P T(D)$ is not known, we consider other measure $p=\frac{U B(D)-L B(D)}{L B(D)} 100 \%$, where $p \geq q$. In case $p=0$ we claim $\mathcal{A}(\mathcal{D})=O P T(D)$. Thus, finding the best bounds has the large practice importance.

At the moment is most known Model 1 to that is devoted many publications. This problem lets to develop a large number of the different heuristic approximation algorithms \mathcal{A}. Among these algorithms there are a large interest to the such ones where one can evaluate a behavior of algorithm in worst case for all initial data by formula $\mathcal{A}(\mathcal{D}) \leq \alpha \mathcal{O} \mathcal{P} \mathcal{T}(\mathcal{D})+\beta$. where α and β are the real constants, $\alpha \geq 1$. As example, for a known fast algorithm $F F D$ (First Fit by Decreasing) in [5] is proved a result $F F D(A) \leq \frac{11}{9} O P T(A)+4$. A complexity of $F F D$ is $O\left(m^{2}\right)$. But a number of like algorithms is not very many. Most of effective algorithms no have the theoretical results of worst case. Here we ask: how to evaluate a worse case (to find the asymptotic constant α) of algorithm \mathcal{A} by experimental way? We suppose a rough decision would be following. For a fixed n we present a limited number of N ranges $\Delta_{i}(n)=\left[\rho_{i}, \sigma_{i}\right], 0<$ $\rho_{i}<\sigma_{i}<1, \rho_{i}<\frac{1}{2}, i \in[1, N]$. For each range $\Delta_{i}(n)$ we generate the different random distribution types (e.g. a uniform distribution) very many times. For each k th distribution $s\left(a_{j}\right) \in\left[\rho_{i} B, \sigma_{i} B\right], j \in[1, n]$, we find $\mathcal{A}(\mathcal{D}), L B(D)$ and set $p_{i}^{k}(n):=p$. Then $p_{i}^{\max }(n)=\max _{k} p_{i}^{k}(n)$ will be a worst case of all $p_{i}^{k}(n)$ for a range $\Delta_{i}(n)$. We define $p(n)=\max _{i} p_{i}^{\max }(n)$ and state an experimental result as $\alpha^{\prime}(n)=1+p(n) / 100$ that shows a primary opinion about the real α, where $\alpha^{\prime}(n) \leq \alpha$ or $\alpha^{\prime}(n)>\alpha$. At present a best lower bound for Model 1 is an $L P(A)$ that is found using a Linear Programming technique. In [7] are spoken a hypothesis that $O P T(A)-L P(A) \leq 1$ for all initial data D since no one instance has been discovered with $O P T(D)-L P(D)=2$ yet. It follows the $L P$-bound is a near-optimal one. But a complexity of finding $L P$ bound increases dramatically with m. In [1] there are the tables of experiments for the different groups of initial data where in particular for a range of weights $(B / 4, B / 2]$ and $m=3200, n=1,000,000$ the total $L P$-runtime is about 100 hours. Thus, using $L P$ method for the largest parameters m is impossible in practice. But we must observe that a structure of $L P$-approach doesn't let to break a process to a given moment since $L P$-bound may be incorrect. That is, to get a correct lower bound by $L P$-method it
is necessary to wait a finish of $L P$-program. In order words, the $L P$-approach lets to find the near-optimal lower bounds for the large m by expensive price. To reduce the total runtime is used a grouping method. An idea of method is we change an initial data W to a data W^{\prime} with a less number $m^{\prime}<m$ (we can represent W and W^{\prime} as the break-lines $\left\{s\left(a_{k}\right)\right\}$ and $\left\{s^{\prime}\left(a_{k}\right)\right\}$ respectively, $\left.s^{\prime}\left(a_{k}\right) \leq s\left(a_{k}\right), k \in[1, n]\right)$. But a difference $d=L P(W)-L P\left(W^{\prime}\right)$ can be essential: the less m^{\prime} the more d. Thus is actual the approaches to find the both fast and quality lower bounds for the large m. In our paper we propose one of such approaches to solve this problem.

Our estimation technique is of the two blocks: the initial reduction and estimate corridor. The first block removes the dominate groups of weights from the initial data D and produces the initial reduction of two types. The first type (A-type) is used only for Model 1 by a formula: $\operatorname{OPT}(A)=M_{0}+O P T\left(A^{\prime}\right), M_{0}=M_{1}+M_{2}+M_{3}+M_{4}+\cdots+M_{H}$, where $M_{1}, M_{2}, M_{3}, M_{4}, \ldots M_{H}$ are the numbers of the dominate singletons, pairs, triplets, quarters, ...respectively, M_{0} is a number of bins reduced, $A^{\prime}=A \backslash A^{0}, A^{0}=$ $\bigcup_{i=1}^{H} A^{i}, A^{i}=\bigcup_{j=1}^{M_{i}} A_{j}^{i}, H:=H(B)$ is a maximal number of weights to put into a bin of capacity B. A singleton is a bin of one weight, a pair is a bin of the two weights, a triplet is a bin of the three weights and so on. Each subset A_{j}^{i} is a dominate group of i weights. Here $A^{1}, A^{2}, A^{3}, A^{4}, \ldots A^{H}$ are the lists of the dominate singletons, pairs, triplets, quarters, ... respectively. The second type (B-type) is the general one for all models and is used to solve Model $\mathbf{0}$ by a formula: $(A, L) \rightarrow\left(A^{\prime}, L^{\prime}\right)$. Here we lead an initial data (A, L) to a data $\left(A^{\prime}, L^{\prime}\right)$. The second block estimates an existence of reasonable solutions for a fixed number (M) of subsets. This block solves a problem: does exist a packing A into M bins: $0<B_{i}^{\min } \leq C_{i} \leq B_{i}^{\max } \leq B_{i}, i \in[1, M]$? We define a predicate $P\left(A, B^{\min }, B^{\max }\right)=\mathbf{N O}$, if we claim "packing A into L doesn't exist" and $P\left(A, B^{\min }, B^{\max }\right)=$ YES otherwise. A result of solving it problem is an estimate corridor $\left[C_{i}^{\min }, C_{i}^{\max }\right]: B_{i}^{\min } \leq C_{i}^{\min } \leq C_{i} \leq C_{i}^{\max } \leq B_{i}^{\max }, i \in[1, M]$. These blocks are interlinked closely. The results of the first block are used in the second block and vice versa.

In Section 2 we describe the initial reduction algorithms. In Section 3 we describe the algorithms of building the estimation corridor. In Section 4 we give the procedures of building the bounds for our models. In Section 5 we give the experimental results.

2. Initial reduction

2.1 A-type initial reduction

Definition 1. We call a group $G=\left\{a_{N_{k}(i)}\right\}, N_{k}(i)=N_{k-1}(i)+1, k \in[1, i]$ as a dominate one, if a number $p:=N_{1}(i)$ has a property: $\sum_{k=p}^{p-k+1} s\left(a_{k}\right) \leq B$, $\sum_{k=p-1}^{p+i-2} s\left(a_{k}\right)>B$, where $N_{0}(i):=N_{1}(i)-1$ is a number of items before a_{p}.

Here $N_{1}(1)$ defines a number for the dominate singletons, $N_{1}(2)$ for the dominate pairs, $N_{1}(3)$ for the dominate triplets, $N_{1}(4)$ for the dominate quarters and so on. If an optimum solution has at least one group $G^{\prime}=\left\{a_{N_{k}^{\prime}(i)}\right\}, k \in[1, i]$, where $N_{1}^{\prime}(i) \geq N_{1}(i)$, then we can remove G from A and put G into A^{0} since $s\left(a_{N_{k}(i)}\right) \geq s\left(a_{N_{k}^{\prime}(i)}\right)$ because of $N_{k}^{\prime}(i)>N_{k}(i), k \in[1, i]$.

Algorithm A to build A^{0}.

1. $A^{0}:=\emptyset, A^{\prime}:=A, M:=\mathbf{P}\left(A^{\prime}\right)$.
2. $i:=0, \mu(0):=0$.
3. $i:=i+1$.
4. $M^{\prime}:=M-\mu(i-1)$. If $\left(M^{\prime}=0\right)$ STOP.
5. Algorithms A2 and A3 to find G.
6. If $G \neq \emptyset\left\{A^{0}:=A^{0} \bigcup G, A^{\prime}:=A^{\prime} \backslash G, M:=\mathbf{P}\left(A^{\prime}\right)\right\}$.
7. Algorithm A1 to find $\mu(i)$.
8. Go to 2 .

Here $\mathbf{P}\left(A^{\prime}\right)$ is an algorithm that produces a bound $M: \min _{M} P\left(A^{\prime}, B^{\min }, B^{\max }\right)=\mathrm{YES}$, $B_{i}^{\min }=w_{m}, B_{i}^{\max }=B, i \in[1, M], \mu(i-1)$ is a maximal number of bins that can be used by weights of range $\left[1, N_{0}(i)\right], \mu(i-1) \leq N_{0}(i)$. The algorithms A1 and A2 try to find G.

Algorithm A1 to find $\mu(i)$ We will find $\mu(i)$ by using a formula $\mu(1)=N_{0}(2)$, $\mu(i)=\mu(i-1)+x(i), i \geq 2$, where $x(i)$ is a maximal number of bins that can use $x(i)$ weights from a range $\Delta(i)=\left[N_{1}(i), N_{0}(i+1)\right], x(i) \leq k_{0}=N_{0}(i+1)-N_{1}(i)+1$. We ask: can we put each weight of $\Delta(i)$ into a personal bin? Suppose we have put k weights of $\Delta(i)$ into k bins. We consider a sum of the first k weights of $\Delta(i)$ as $S_{1}(k)=\sum_{j=N_{1}(i)}^{N_{1}(i)+k-1} s\left(a_{j}\right)$ and a sum of $i k$ easiest weights as $S_{2}(k)=\sum_{j=n-i k+1}^{n} s\left(a_{j}\right)$. If $S_{1}(k)+S_{2}(k)>k B$ then at least one of k bins will be have not more i weights. As any group $\left\{s\left(a_{J_{1}}\right), s\left(a_{J_{2}}\right), \ldots s\left(a_{J_{i}}\right)\right\}$ is dominated by $G, J_{1}, J_{2}, \ldots, J_{i} \in \Delta(i)$, we can not use k bins by k weights of $\Delta(i)$. Because of we have the two cases: to put the k th weight of $\Delta(i)$ into a bin of $\mu(i-1)$ bins where we have put the weights $s\left(a_{j}\right), j \in\left[1, N_{0}(i)\right]$ or to join the k th weight with one of previous $k-1$ weights $s\left(a_{j}\right)$, $j \in[\mu(i-1)+1, \mu(i-1)+k-1]$. The other details we put to an algorithm of building $x(i)$.

We denote $S_{1}(i, q)=\sum_{j=n-i q+1}^{n} s\left(a_{j}\right)$ and $S_{2}(q)=q B$.
Algorithm to find $x(i)$

1. $x(i):=0, k_{0}:=N_{0}(i), k:=k_{0}, p:=0$.
2. $k:=k+1, q=k-k_{0}$. If $\left(k>N_{0}(i+1)\right)$ STOP
3. If $\left(\sum_{j=k_{0}+1}^{k} s\left(a_{j}\right)+S_{1}(i, q) \leq S_{2}(q)\right)\{x(i):=x(i)+1\}$
else $\left\{p:=p+1, k_{0}:=k_{0}+1\right.$, If $\left.(p=i) \quad\{x(i):=x(i)+1, p:=0\}\right\}$.
4. Go to 2 .

Algorithm A2 to build A^{0}. We consider a number M^{\prime} of bins of range $[1, \mu(i-1)]$. Let an algorithm packs a maximum number K of the weights $s\left(a_{j}\right)$ into M^{\prime} bins, $K \geq M^{\prime}$, $j \in[1, K]$. It follows we can put not more $n-K$ weights into $M-M^{\prime}$ bins since a set of weights $\left\{s\left(a_{1}\right), \ldots, s\left(a_{K}\right)\right\}$ dominates any set of K weights $\left\{s\left(a_{J_{1}}\right), \ldots, s\left(a_{J_{k}}\right)\right\}$ since $s\left(a_{k}\right) \geq s\left(a_{J_{k}}\right), k \in[1, K]$. If $n-K<(i+1)\left(M-M^{\prime}\right)$ it follows we find at least one group of i weights to put into a bin from $M-M^{\prime}$ bins. If we get a result $n-K<(i+1)\left(M-M^{\prime}\right)$ for all $M^{\prime} \in[1, \mu(i-1)]$ then we can remove the dominate group G from A and put G into A^{0}.

Algorithm A3 to build A^{0}. Let a difference $M^{\prime \prime}=M-\mu(i-1)>0$. It follows: each bin of range $\Delta=\left[N_{1}(i), N_{1}(i)+M^{\prime \prime}-1\right]$ has the weights with the numbers $j \geq N_{1}(i)$. We consider any $k \in \Delta$ and ask: can we put k weights $\left\{s\left(a_{j}\right)\right\}, j \in\left[N_{1}(i), N_{1}(i)+k-1\right]$ into k bins? In other words: can we put only one weight into each bin? In this case each bin have to get not less $i+1$ weights. We denote $S_{1}(k)=\sum_{j=N_{1}(i)}^{N_{1}(i)+k-1} s\left(a_{j}\right)$ as sum of k weights and $S_{2}(k)=\sum_{j=n-i k+1}^{n} s\left(a_{j}\right)$ as sum of $i k$ easiest weights. If $S_{1}(k)+S_{2}(k)>k B$ then at least one of k bins must get a group of i weights of range Δ. As any i $\operatorname{group}\left\{s\left(a_{j_{1}}\right), s\left(a_{j_{2}}\right), \ldots s\left(a_{j_{i}}\right)\right\}$ is dominated by $\left\{s\left(a_{N_{1}(i)}, s\left(a_{N_{1}(i)+1}, \ldots s\left(a_{N_{1}(i)+i-1}\right)\right\}\right.\right.$, $j_{1}, j_{2}, \ldots j_{i} \in \Delta$, we claim: we can't put k weights into k bins. Now we want to know: can we put k weights $s\left(a_{j}\right)$ into $k^{\prime} \in[1, k]$ bins? Again, each bin have to get not less $i+1$ weights. We denote $S_{2}\left(k^{\prime}\right)=\sum_{j=n-k^{\prime}(i+1)+k+1}^{n} s\left(a_{j}\right)$. If $S_{1}(k)+S_{2}\left(k^{\prime}\right)>k^{\prime} B$ then at least one of k^{\prime} bins gets not more i weights of range Δ. If we get a result $S_{1}(k)+S_{2}\left(k^{\prime}\right)>k^{\prime} B$ for all $k^{\prime} \in[1, k]$ for a fixed $k \in\left[1, M^{\prime \prime}\right]$, then we can remove the dominate group G from A and put G into A^{0}.

2.2 B-type initial reduction

Let we given by the constraints $B_{i} \geq B_{i}^{\min }, i \in[1, M]$. We will use a parameter par as $\mathbf{1}$ in case $B^{\text {min }} \neq \emptyset$ and as $\mathbf{0}$ otherwise. Now we consider a group G and a range of bins $B_{i}, i \in[q, Q]$. Let $P(q)$ is a minimal number: $s\left(a_{P(q)}\right) \leq B_{q}, s\left(a_{P(q)-1}\right)>B_{q}$. Let $\sum_{j=p}^{p+i-1} s\left(a_{j}\right) \leq B_{Q}, p:=N_{1}(i)$, here $N_{1}(i)$ we form for $B:=B_{Q}, i=1,2, \ldots H(B)$. Let a difference $M^{\prime \prime}=Q-q+1-\mu(i-1)>0$.

Algorithm B2. We consider a number M^{\prime} of bins of range $[1, \mu(i-1)]$. We build B^{\prime} as a set of bins as following: $B_{i}^{\prime}=B_{i}, i \in[1, q-1], B_{i}^{\prime}=0, i \in\left[q, q-1+M^{\prime}\right], B_{i}^{\prime}=B_{i}$, $i \in\left[q+M^{\prime}, M\right]$. Let an algorithm packs a dominate set of weights $D(K)=\left\{s\left(a_{I_{1}}\right)\right.$, $\left.s\left(a_{I_{2}}\right), \ldots, s\left(a_{I_{K}}\right)\right\}$ into B^{\prime} bins and a number K is maximal. It follows any set $D^{\prime}(K)=\left\{s\left(a_{J_{1}}\right), s\left(a_{J_{2}}\right), \ldots, s\left(a_{J_{K}}\right)\right\}$ of K weights that we can put into B^{\prime} bins will be dominated by $D(K): s\left(a_{I_{k}}\right) \geq s\left(a_{J_{k}}\right), k \in[1, K]$. Then $n-K$ will be a maximal number of weights that we can put into the bins $B_{i}, i \in\left[q, Q-M^{\prime}\right]$. If we get a result $n-K<(i+1)\left(Q-q+1-M^{\prime}\right)$ for all $M^{\prime} \in[1, \mu(i-1)]$ then we can remove the dominate group G from A and put G into B_{Q}, after we remove G and B_{Q} from the initial A and L and set $A^{\prime}:=A \backslash G, L^{\prime}:=L \backslash B_{Q}$.

Algorithm B3. We define a set of numbers $J=\{1,2, \ldots n\} \backslash\left\{I_{1}, I_{2}, \ldots, I_{K}\right\}$ that we can use as the numbers for the easiest weights. We denote $S_{1}(k)=\sum_{j=N_{1}(i)}^{N_{1}(i)+k-1} s\left(a_{j}\right)$ as a sum of k heaviest weights from a range $\left[N_{1}(i), N_{1}(i)+M^{\prime \prime}-1\right], S_{2}\left(k^{\prime}\right)=$ $\sum_{j=n-k^{\prime}(i+1)+k+1}^{n} s\left(a_{I_{j}}\right)$ as a sum of $i k^{\prime}$ easiest weights and $S_{3}\left(k^{\prime}\right)=\sum_{i=q}^{q+k^{\prime}-1} B_{i}$ as a sum of k^{\prime} heaviest bins of range $[q, Q], k^{\prime} \in[1, k]$. If we get a result $S_{1}(k)+S_{2}\left(k^{\prime}\right)>S_{3}\left(k^{\prime}\right)$ for all $k^{\prime} \in[1, k]$ for a fixed $k \in\left[1, M^{\prime \prime}\right]$, then we can remove G from A and put into B_{Q}, after we set $A^{\prime}:=A \backslash G$ and $L^{\prime}:=L \backslash B_{Q}$.

Algorithm B(par).

1. $A^{\prime}:=A, L^{\prime}:=L$.
2. $q:=0, G:=\emptyset$.
3. $q:=q+1$. If $(q>M)$ return 1 .

To build $N_{1}(i)$ for the $B:=B_{Q}, i=1,2, \ldots H(B)$.
If $(P(q)=P(q-1))$ Go to 3 .
4. $Q:=q-1$.
5. $Q:=Q+1$. If $(Q>M)$ Go to 3 .

If $\left(B_{Q}=B_{Q+1}\right)$ Go to 5 .
6. $i:=0, \mu(0):=0$.
7. $i:=i+1$.
8. $M^{\prime}:=Q-q+1-\mu(i-1)$. If $\left(M^{\prime}=0\right)$ Go to 5 .
9. Algorithms B2 and B3 to find G.
10. If $(G \neq \emptyset)$ \{

If ($\operatorname{par}=1)\left\{\operatorname{If}\left(\operatorname{sum}(G)<\min _{q \leq j \leq Q} B_{j}^{\min }\right)\right.$ return 0 else Go to 11$\}$.
Build $A^{\prime}:=A^{\prime} \backslash G$ and $L^{\prime}:=L^{\prime} \backslash B_{Q}$.
If ($P\left(A^{\prime}, L^{\prime}\right)=$ NO $)$ return 0 else Go to 2. $\}$
11. Algorithm $\mathbf{A 1}\left(B:=B_{q}\right)$ to find $\mu(i)$.
12. Go to 7 .

3. Estimation corridor

We denote $\lambda(h, H)$ as a maximal number of disjoint subsets that one can get from the initial A in order to a sum of weights in each subset would belong to a range $[h, B]$. As a problem of finding of $\lambda(h, H)$ is NP-hard in the strong sense, we will find an upper bound $\nu(h, H) \geq \lambda(h, H)$. Below we give a recursive algorithm A4 to build $\nu(h, H)$.

Algorithm A4

1. $A^{\prime}:=A, A^{+}:=\emptyset, s:=0, z_{0}:=0, \nu(h, H):=0$.
2. For $x=h$ To H
3. $\mathrm{y}:=0$
4. For $k=1$ To n
5. If $\left.\quad \exists A^{\prime \prime} \subseteq A^{\prime}: h \leq \sum_{a_{j} \in A^{\prime \prime}} s\left(a_{j}\right)+s\left(a_{k}\right) \leq x\right)$
6. $\quad\left\{y:=y+s\left(a_{k}\right), s:=s+s\left(a_{k}\right), A^{\prime}:=A^{\prime} \backslash a_{k}, A^{+}:=A^{+} \bigcup a_{k}\right\}$.
7. End
8. $\quad \lambda:=\lfloor y / x\rfloor$.
9. While $(\lambda>0)$
10. If $(P(H, x, s, \lambda)=0)\{\lambda:=\lambda-1\}$ else Break While.
11. End While
12. $\nu(h, H):=\nu(h, H)+\lambda, z_{x}:=\lambda$.
13. End
14. STOP

Algorithm $P(H, x, s, \lambda)$

1. $K:=\nu(h, H)+\lambda, A:=A^{+}, M:=K+1$.
2. $B_{i}^{\max }:=x, B_{i}^{\min }:=h, i=1,2, \ldots K$, $B_{K+1}^{\max }:=s-\lambda x-\sum_{i=1}^{x-1} z_{i} i, B_{K+1}^{\min }:=\max \{s-K x, 0\}$.
3. If (Algorithm $\mathbf{B}(\mathbf{0})=0$) return 0 .
4. If (Algorithm B(1) $=0$) return 0.
5. return 1 .

Now we define:
An operator $P^{+}(h, H, x)=W^{+}=\left\{w_{i}^{+} \circ k_{i}^{+}\right\}$, where $w_{i}^{+}=H-i+1$,
$k_{i}^{+}=\nu(H-i+1, H)-\nu(H-i+2, H), i \in[1, p], k_{p}^{+}=x-\nu(H-p+2, H)$,
$k_{p}^{+}<\nu(H-p+1, H)-\nu(H-p+2, H), \sum_{i=1}^{p} k_{i}^{+}=x, \nu(H+1, H):=0$,
a $\operatorname{sum} S^{+}(h, H, x)=\sum_{i=1}^{p} k_{i}^{+} w_{i}^{+}, w_{p}^{+}<h \Rightarrow S^{+}(h, H, x):=0, C^{+}=\left\{C_{j}^{+}\right\}$as
$C_{j}^{+}=H, \quad j \in\left[1, k_{1}^{+}\right]$,
$C_{j}^{+}=H-1, \quad j \in\left[k_{1}^{+}+1, k_{1}^{+}+k_{2}^{+}\right], \ldots$
$C_{j}^{+}=H-p+1, j \in\left[\sum_{i=1}^{p-1} k_{i}^{+}+1, \sum_{i=1}^{p} k_{i}^{+}\right]$.
An operator $P^{-}(h, H, x)=W^{-}=\left\{w_{i}^{-} \circ k_{i}^{-}\right\}$, where $w_{i}^{-}=h+i-1$, $k_{i}^{+}=\nu(h+i-1, h)-\nu(h+i-2, h), i \in[1, p], k_{p}^{-}:=x-\nu(h+p-2, h)$, $k_{p}^{-}<\nu(h+p-1, h)-\nu(h+p-2, h), \sum_{i=1}^{p} k_{i}^{-}=x, \nu(h-1, h):=0$, a $\operatorname{sum} S^{-}(h, H, x)=\sum_{i=1}^{p} k_{i}^{-} w_{i}^{-}, w_{p}^{-}>H \Rightarrow S^{-}(h, H, x):=\infty, C^{-}=\left\{C_{j}^{-}\right\}$as $C_{j}^{-}=h+p-1, \quad j \in\left[1, k_{1}^{-}\right]$,
$C_{j}^{-}=h+p-2, \quad j \in\left[k_{1}^{-}+1, k_{1}^{-}+k_{2}^{-}\right], \ldots$
$C_{j}^{-}=h, \quad j \in\left[\sum_{i=1}^{p-1} k_{i}^{-}+1, \sum_{i=1}^{p} k_{i}^{-}\right]$.
Algorithm A5 to build the corridor [$\left.C^{\min }, C^{\max }\right]$.

1. $C_{i}^{\text {min }}:=B_{i}^{\text {min }}, C_{i}^{\text {max }}:=B_{i}^{\text {max }}, i=1,2, \ldots M$
2. $i:=0, R E P:=0$.
3. $i:=i+1$. If $(i>M)$ Go to 6. $g:=C_{i}^{\max }$.
4. $C_{i}^{\max }:=\max _{h}\left\{C_{i}^{\min } \leq h \leq \min \left(g, C_{i-1}^{\max }\right): C_{j}^{-} \leq C_{j}^{\max }, j=1,2, \ldots i-1\right.$, $\left.\sum_{j=1}^{i} C_{j}^{-}+\sum_{j=i+1}^{M} C_{j}^{\text {min }} \leq S(A)\right\}$, where $C^{-}=\left\{C_{1}^{-}, C_{2}^{-}, \ldots C_{i}^{-}\right\}=P^{-}\left(C_{i}^{\max }, C_{1}^{\max }, i\right)$.
5. If $\left(C_{i}^{\text {max }}<g\right) R E P:=1$. Go to 3 .
6. $i:=M+1$.
7. $i:=i-1$. If $(i<1)\{\mathbf{I f}(R E P=1)$ Go to 2 else STOP $\} . g:=C_{i}^{\text {min }}$.
8. $C_{i}^{\text {min }}:=\min _{h}\left\{C_{i}^{\text {min }} \leq h \leq C_{i}^{\max }\right\}: C_{i+j}^{+} \geq C_{i+j}^{\min }, j=1,2, \ldots M-i$, $\left.\sum_{j=1}^{i-1} C_{i}^{\max }+\sum_{j=1}^{M-i+1} C_{i}^{+} \geq S(A)\right\}$, where $C^{+}=\left\{C_{1}^{+}, C_{2}^{+}, \ldots C_{M-i+1}^{+}\right\}=P^{+}\left(C_{M}^{\min }, C_{i}^{\min }, M-i+1\right)$.
9. If $\left(C_{i}^{\text {min }}>g\right) R E P:=1$. Go to 7 .

4. Building the bounds for the 1 DBP class

Here we give building the bounds only for the first 7 models from the 1DBP class.

Model 0.

a. Lead (A, L) to $\left(A^{\prime}, L^{\prime}\right)$ using the algorithm $\mathbf{B}(0)$. Set $A:=A^{\prime}$ and $L:=L^{\prime}$.
b. Answer is a result of $\mathbf{B}(0)$, where $B_{i}^{\max }:=B_{i}, i=1,2, \ldots M, M=\left|L^{\prime}\right|$.

Model 1.
a. Lead A to A^{0} using the algorithm A.Set $A^{\prime}:=A \backslash A^{0}$.
b. Answer is $L B(A):=P\left(A^{\prime}\right)$.

Model 2.

For $M=\lfloor S(A) / B\rfloor$ To 1 By -1
a. Set $B_{i}^{\min }:=B, B_{i}^{\max }:=S(A), i=1,2, \ldots M$.
b. If $(\mathbf{B}(\mathbf{0})=\mathbf{0})$ continue For. If $(\mathbf{B}(\mathbf{1})=\mathbf{0})$ continue For.
c. Answer is $U B(A):=M$. STOP.

End
Model 3.
For $M=\lfloor S(A) / B\rfloor$ To $S(A)$
a. Set $B_{i}^{\min }:=B_{\text {min }}, B_{i}^{\text {max }}:=B_{\text {max }}, i=1,2, \ldots M$.
b. If $(\mathbf{B}(\mathbf{0})=\mathbf{0})$ continue For. If $(\mathbf{B}(\mathbf{1})=\mathbf{0})$ continue For.
c. Answer is $L B(A):=M$. STOP.

End
Model 4.
For $M=\lfloor S(A) / B\rfloor$ To 1 By -1
a. Set $B_{i}^{\min }:=B_{\text {min }}, B_{i}^{\max }:=B_{\text {max }}, i=1,2, \ldots M$.
b. If $(\mathbf{B}(\mathbf{0})=\mathbf{0})$ continue For. If $(\mathbf{B}(\mathbf{1})=\mathbf{0})$ continue For.
c. Answer is $U B(A):=M$. STOP.

End

Model 5.
For $B=\lceil S(A) / M\rceil$ To $S(A)$
a. Set $B_{i}^{\text {min }}:=w_{m}, B_{i}^{\text {max }}:=B, i=1,2, \ldots M$.
b. If $(\mathbf{B}(0)=\mathbf{0})$ continue For.
c. Answer is $L B(A):=B$. STOP.

End

Model 6.

For $T=1$ To $S(A)$
a. Set $B_{i}^{\min }:=w_{m}, B_{i}^{\max }:=\tau_{i} T, i=1,2, \ldots M$.
b. If $(\mathbf{B}(\mathbf{0})=\mathbf{0})$ continue For.
c. Answer is $L B(A):=T$. STOP.

End

5. Experimental results

Our program is written in Microsoft Visual C++. We performed our experiments on computer Intel/Core2 Duo/E6400 2,13GHz,2Gb RAM. Here we present our results only for the Model 1 . We used a fastest mode to get A^{0} and a lower bound $L B(A)=$ $M_{0}+\left\lceil S\left(A^{\prime}\right) / B\right\rceil, A^{\prime}=A \backslash A^{0}$, using the algorithm A. Our purpose was to evaluate a quality of $L B(A)$. We developed new fast approximation algorithm $\mathbf{F G}$ to get the upper bound $F G(A)$ to $O P T(A)$ and measure of quality of $L B(A)$ (and $F G(A)$ too) as $p=\frac{F G(A)-L B(A)}{L B(A)} 100 \%$.

Algorithm FG

1. Find A^{0} and M_{0} by algorithm A. Set $A^{\prime \prime}:=A \backslash A^{0}$.
2. Set the initial $a:=\left\lceil S\left(A^{\prime \prime}\right) / B\right\rceil$ and $b:=F F D\left(A^{\prime \prime}\right)$.
3. While ($b>a$)
4. \quad Set $A:=A^{\prime \prime}, M:=a+(b-a) / 2, L:=\left\{B_{i}\right\}, B_{i}=B, i=1,2, \ldots M$.
5. If $(\mathbf{B}(\mathbf{0})=0)\{$ Set $a:=M+1$; Continue While $\}$
6. Lead $(A, L) \rightarrow\left(A^{\prime}, L^{\prime}\right)$ during B, set $A:=A^{\prime}, L:=L^{\prime}, n:=\left|A^{\prime}\right|, M^{\prime}:=\left|L^{\prime}\right|$.
7. Find $k_{0}=\max \left\{s\left(a_{i}\right)+s\left(a_{i+1}\right)+s\left(a_{n}\right)>B\right\}$, set $B_{M^{\prime}-i+1}:=B-s\left(a_{i}\right)$, $i=1,2, \ldots k_{0}$.
8. For $k=k_{0}+1$ To n
9. \quad For $i=M^{\prime}$ To 1 By -1
10. Set $g a p:=B_{i}-s\left(a_{k}\right)$. If $\left(g a p<s\left(a_{n}\right)\right)$ continue For i
11. If $\left(B_{i}<B\right)$ \{ Find a maximal $s\left(a_{p}\right) \leq$ gap,
12. \quad Set $\left.A:=A \backslash\left\{a_{k} \bigcup a_{p}\right\}, L:=L \backslash B_{i}\right\}$.
13. else $\left\{\right.$ Set $\left.B_{i}:=B-s\left(a_{k}\right), A:=A \backslash a_{k}\right\}$.
14.

Sort L by decreasing: $B_{i} \geq B_{i+1}$, Break For i (continue For k)
End For i
If $\left(B_{i}-s\left(a_{k}\right)<s\left(a_{n}\right)\right)$ for all $i \in\left[1, M^{\prime}\right]\{$ Set $a:=M+1$, continue While $\}$.
17. $\begin{array}{r}\text { If }\left(B_{i}\right. \\ \text { 18. }\end{array}$ End For k
19. Set $b:=M$, continue While.
20. End While
21. Set $F G(A):=M_{0}+b$. STOP.

The test instances we created using a random distribution generator $B S(\rho B, B / 2, B, m)$ from [1]. The first series of experiments was for the ranges $(\rho, B / 2], \rho=0.25,0.24, \ldots 0.16$. Our parameters were $m=n=10000$ and $B=10^{9}$. We denote $M^{0}=\lceil S(A) / B\rceil$.

ρ	$\frac{\left\|A^{0}\right\|}{n} 100 \%$	$\frac{L B(A)-M^{0}}{M^{0}} 100 \%$	$\frac{F G(A)-L B(A)}{L B(A)} 100 \%$	$\frac{F F D(A)-L B(A)}{L B(A)} 100 \%$	$F G(A)$ time sec
0.25	34.66	3.933	0.102	6.903	176
0.24	26.32	2.500	0.185	7.264	176
0.23	24.34	2.186	0.160	6.873	188
0.22	19.90	1.439	0.109	6.848	435
0.21	14.80	0.901	0.391	6.788	1037
0.20	10.48	9.458	0.485	6.500	1180
0.19	7.12	0.232	0.695	6.000	843
0.18	4.12	0.059	0.823	5.530	1565
0.17	1.48	0.000	1.040	4.070	1506
0.16	0.00	0.000	1.240	4.540	4075

The second series of experiments was for a range $(B / 4, B / 2], B=10^{9}$ and $m=n \in[10000,50000]$.

$m=n$	10000	15000	20000	25000	30000	35000	50000
$L B(A)$ time sec	0	1	1	3	3	4	8
$F G(A)$ time sec	176	757	1850	2387	7690	7894	24655

The third series of experiments was for a range $(B / 4, B / 2], B=10^{6}, B=10^{9}$ and $m=n=1000,1500,2000$. For $m=n=1000 \wedge B=10^{6}$ we generated the 18 test instances, for $m=n=1500 \wedge B=10^{9}$ the 6 test instances and for $m=n=$ $1500 \wedge B=10^{9}$ the 6 test instances. We wish to know how often can appear the optimal solutions. We saw the optimal solutions arrived about in the 50% cases for $m=n=1000$ and less 50% for the others $m=n$.

The forth series of experiments was for a range $(B / 4, B / 2]$ and $m=n=700$. Here we wished to know about $k=L P(A) / L P\left(A^{\prime}\right)$, where we recall $A^{\prime}=A \backslash A^{0}$. We sent a query to both G.Belov and G.Scheithauer from Dresden Technology University (DTU) to solve the 6 test instances. The first instance $A(1)$ was for $B=10000$. The second instance was $A(2):=A^{\prime}(1)=A(1) \backslash A^{0}(1)$ with $\left|A(1)^{0}\right|=338$ (the 119 dominate pairs). The third instance $A(3)$ was for $B=50000$. The forth was as $A(4):=A^{\prime}(3)=A(3) \backslash A^{0}(3)$ with $\left|A^{0}(3)\right|=208$ (the 104 dominate pairs). Fifth instance was for $B=50000$. The sixth instance was as $A(6):=A^{\prime}(5)=A(5) \backslash A^{0}(5)$ with $\left|A^{0}(5)\right|=226$ (the 113 dominate pairs). We got the following results from DTU to our query:

$$
\begin{array}{lll}
L P(A(1))=1774 \mathrm{sec}, & L P(A(2))=925 \mathrm{sec}, & k=1774 / 925=1.9178 . \\
L P(A(3))=1935 \mathrm{sec}, & L P(A(4))=1086 \mathrm{sec}, & k=1935 / 1086=1.7818 . \\
L P(A(5))=1952 \mathrm{sec}, & L P(A(6))=1013 \mathrm{sec}, & k=1952 / 1013=1.9269 .
\end{array}
$$

Thus, for these 6 instances we have a result: an $L P$-time $\left(A^{\prime}\right)$ of the reduced instances faster about 2 times than an $L P$-time (A) of the original instances.

REFERENCES

1. Applegate D., Buriol L., Dillard B., Johnson D. and Shor P. The Cutting-Stock Approach to Bin Packing: Theory and Experiments, In Proceedings of the Fifth Workshop on Algorithm Engineering and Experimentation, R.E. Ladner (Editor), SIAM, 2003, pp. 1-15.
2. Fedulov G. One-dimensional bin packing class: fast algorithms to find the bounds of objective functions, Georgian Engineering News, 2, (2008), 42-47.
3. Fukunaga A. Bin Completion Algorithms for Multicontauner Packibg, Knapsack, and Covering Problems, Journal of Artifical Intelligence 28, (2007), 393-429.
4. Garey M. and Johnson D. Computers and intractability: A Guide to the theory of NPCompleteness, W.H. Freeman and Company, 1979.
5. Johnson D. Fast Algorithm for Bin Packing, Journal of Computer and System Sciences, 8, (1974), 272-314.
6. Martello S. and Toth P. Knapsack Problems, John Wiley and Sons, 1990.
7. Scheithauer G. and Terno J. Theoretical investigations on the modified integer round-up property for the one-dimensional cutting stock problem. Oper. Res. Lett., 20, (1997), 93-100.

Received: 25.06.2008; revised: 27.10.2008; accepted: 26.11.2008.

