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EXPLICIT SOLUTION OF SECOND BVP OF THE ELASTIC MIXTURE FOR
HALF-SPACE

Bitsadze L.

I. Vekua Institute of Applied Mathematics of
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Abstract. In this paper we consider the second BVP of elastic mixture theory for a
transversally-isotropic half-space. The solution of second BVP for the transversally-isotropic
half-space is given in [1]. The present paper is an attempt to extend this result to BVP of
elastic mixture theory for a transversally-isotropic elastic body. Using the potential method
and the theory of integral equations, the uniqueness theorem is proved for half-space and the
second BVP is solved effectively (in quadratures).
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Second BVP and the uniqueness theorem for half-space

Let the plane Ox1x2 be the boundary of the half-space x3 > 0. Let the upper half-
space will be denoted by D and the boundary of D by S. Let the axis Ox3 be directed
vertically upwards and the normal is n(0, 0, 1).

A basic equation of statics of transversally-isotropic elastic mixture theory can be
written in the form [2]

C(∂x)U =

(
C(1)(∂x) C(3)(∂x)
C(3)(∂x) C(2)(∂x)

)
U = 0, (1)
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c
(k)
pq are constants characterizing the physical properties of the mixture and satisfying

certain inequalities caused by the positive definiteness of potential energy. UT (x) =
(u′, u′′) is six-dimensional displacement vector-function, u′(x) = (u′1, u

′
2, u

′
3) and u′′(x) =

(u′′1, u
′′
2, u

′′
3) are partial displacement vectors. Throughout this paper the superscript

”T” denotes transposition.
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Definition 1. A vector-function U(x) defined in the domain D, is called regular
if it has integrable continuous second derivatives in D and U(x) itself and its first
derivatives are continuously extendable at every point of the boundary of D, i.e., U(x) ∈
C2(D) ∩ C1(D) and satisfies the following conditions at infinite

U(x) = O(|x|−1),
∂U

∂xk

= O(|x|−2), |x|2 = x2
1 + x2

2 + x2
3, j = 1, 2, 3; k = 1, 2, 3.

For the equation (1) we pose the following BVP. Find a regular function U(x),
satisfying in D the equation (1), if on the boundary S the stress vector is given in the
form

[T (∂x, n)U ]+ = f(z), z ∈ S, (2)

where (.)+ denotes the limiting value from D and f is a given vector. T (∂x, n)U is a
stress vector
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The Uniqueness Theorem. Let us prove that the second homogeneous BVP has
only trivial solution. Note that, if U is the regular solution of the equation (1) and
satisfies the following conditions at infinite

U(x) = O(|x|−α), P (∂x, n)U = O(|x|−1−α), α > 0

we have the following formula

∞∫
−∞

∞∫
−∞

E(U,U)dy1dy2 = −
∞∫
−∞

∞∫
−∞

U−[TU ]−dy1dy2, (4)

where T (∂y, n)U is a stress vector, E(U,U) ≥ 0. If [TU ]− = 0,from (4) follows U =
a + [b, x], but U(x) = O(|x|−α),that a = 0, b = 0, and U = 0, x ∈ D. Therefore the
homogeneous equation has only a trivial solution.Thus we shall formulate the following

Theorem. The second BVP has at most one regular solution.
The second BVP. The solution of the second BVP will be sought in the domain

D in the form

U(x) =
1

2π
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M(x− y)g(y)dy1dy2, (5)

where g is an unknown real vector. M(x− y) is the following matrix

M(x− y) =

(
Γ(1) Γ(2)

Γ(3) Γ(4)

)
, (6)
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where
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The coefficients dk, bk, vij, wij, tij are given in [3].
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We can easily prove that every column of the matrix M(x− y) is a solution of the
system (1) with respect to the point x, if x 6= y.

From (5) for the stress vector we obtain
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For the sought for unknown constants Ak, Bk, Ck, Dk we have the following equation
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By the uniqueness theorem,we conclude that the system (12) is solvable and we uniquely
define Ak, Bk, Ck, Dk.

Taking into account the properties of the double layer potential and the bound-
ary condition for determining g, from (9) we obtain the following Fredholm integral
equation of second kind:

−g(z) +
1

2π

∞∫

−∞

∞∫

−∞

T (∂z, n)M(x− y)g(y)dy1dy2 = f(z), z ∈ S. (13)

From the last equation we have g = −f and (5) takes the form

U(x) = − 1

2π

∞∫

−∞

∞∫

−∞

M(x− y)f(y)dy1dy2, x ∈ D. (14)

Thus we have obtained the Poisson formula for the solution of the second BVP for the
half space. Note that (14) is valid if and only if f ∈ C0,α(S) and satisfies the condition
f = A

|x|1+β α > 0 at infinite, where A is a constant vector and β > 0.
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