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THE THERMO-ELASTICITY PROBLEM OF DEFORMATION OF FLEXIBLE
MULTILAYERED SHELLS OF REVOLUTION WITH LAYERS OF VARIABLE

THICKNESS IN A REFINED SETTING
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Abstract. A version of a refined theory of deformation of flexible multilayered shells of revo-
lution with layers of variable thickness is considered which takes into account non-homogenity
of deformation of lateral shear strains. Using the approach for shells of revolution we get
a non-linear boundary value problem for the system of ordinary differential equations. The
solution of this problem is obtained using the methods of linearization and discrete orthogo-
nalization. Based on the given approach we investigate the concrete examples of the stress-
strain state of shells under the action of temperature field. Some numerical results are also
discussed.
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In the present paper we consider stress-strain state of flexible orthotropic layered
shells, taking into account strain nonhomogeneity of lateral displacement with respect
to the thickness of shells. In the paper [1] it is considered the same situation by means
of refined theory for the class of problems of stress-strain state of flexible layered shells
of revolution with layers with thickness variable along the meridian, influenced by
forced interaction. In this paper using the approach for shells of revolution we consider
strain of flexible layered shells of rotating with layers with thickness variable along the
meridian, taking into account temperature field.

Now let us consider stress-strain state of flexible orthotropic layered shells, which
are under influence of force tension and temperature field. We assume that strain of
shell is elastic, i.e. connection between stress and strain for each i-th layer is described
by the Hooke’s law taking into account Duhamel-Neumann hypothesis in the following
way
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where T (α, β, γ) is temperature field .
Let us present the basic relations of the refined theory of flexible layered orthotropic

shells [3,5,6].
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In particular, for the tangential displacements we have
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where u and v are the tangential displacements of the coordinate surface, ψα and ψβ

are the complete angles of rotation of the normal. γ
(0)
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β are the lateral shears in

the layer containing the coordinate surface, and α and β are the orthogonal coordinates
on the datum surface. The quantities a

(i)
1 , a

(i)
2 , b

(i)
1 , and b

(i)
2 are determined in [4,6].

Taking (2) into account, we present the strain components as
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quantities specifying the strain of the coordinate surface are
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where εα, εα,β and εβ are given in [4,6].
Based on Hooke’s law (1), we obtain the classic relations
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where Nα, Nβ, Nαβ and Nβα are the tangential forces. Qα and Qβ are the shearing
forces. Mα and Mβ are the bending moments. Mαβ and Mβα are the torques. Cij,
Kij, Dij, K1 and K2 are the rigidity characteristics determined in terms of the elastic
parameters of the layers and their thicknesses. A11, A12, . . . , F26 are quantities depend-
ing on the geometric and mechanical parameters of the layers, and k1 and k2 are the
curvatures [4,6].

The equilibrium equations for an element of the shell are
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where

Q∗
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In (6) q1, q2 and q3 are the projections of the surface load onto the coordinate axes
α, β and γ, respectively.

Supplementing Eqs. (2)-(7) with respective boundary conditions, we obtain a non-
linear boundary-value problem. The static boundary conditions are specified in terms
of forces and moments in an integral form and the kinematic boundary conditions are
specified at discrete number of points of the periphery.

We dwell on problems on the stress-strain state of layered shell of revolution with
rigidity variable along the meridian. Assuming that α = s is the are length of the
meridian and β = θ is the central angle in the parallel circle, from the general equations
(2)-(7) for axisymmetric deformation of layered shell of revolution with rigidity variable
along the meridian, under influence of force tension and temperature field we obtain
the resolving system of differential equations
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where the elements a∗ij of the matrix A∗(s), the components of the vector-function

F (s, Y ) and the components of the vector f(s) defines in the same way as in [1], the
components of the vector function F T (s, Y ) and the vector fT (s) have the following
form
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Here r = r(s) is the radius of the parallel circle and ϕ = ϕ(s) is the angle between the
normal and the axis of revolution. The values di, dij, ci, bi, bij are defined as in [11].

To solve the nonlinear boundary-value problem for the system of equation (8)
describing the axisymmetric deformation of shells of revolution with rigidity vari-
able along the meridian, the linearization method and the stable numerical discrete-
orthogonalization method [3] are applied.

Based on the refined theory in question, let us consider, as an example, the de-
formation of a three-layer orthotropic toroidal shell with an elliptic cross section and
layers of thickness variable along the meridian under a boundary force P and normal
extremal pressure q3 and the temperatural field T. In solving the problem, we assume
that the shell is uniformly warm, that is T = T0 = const, and the coordinate surface
formed by revolution the elliptic are about the axis of revolution passes through the
middle layer of the shell.

The parametric equation of the meridian of the coordinate surface has the form

r = R + a cos t; z = b sin t
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≤ t ≤ 0

)
.

The geometric characteristic of the shell are
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The left contour of the shell is subjected to the force P parallel to the axis of
revolution and the right contour is rigidly clamped, i.e., the following conditions are
satisfied:
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Let h1, h2 and h3 be the thicknesses of the outer, middle, and inner layers respec-
tively. Ei
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13 be the shear modulus in the θ = const,

where i = 1, 2, 3 is the layer number. The following values are adopted: R = 180,
a = 75, b = 25, E1

1 = 1, 5 · 106, E1
2 = 3 · 106, E2

1 = 2 · 102, E2
2 = 3 · 102, E3

1 = 1, 2 · 104,
E3

2 = 2, 5 · 104, ν1
12 = 0, 2, ν1

21 = 0, 34, ν2
12 = 0, 1, ν2

21 = 0, 15, ν3
12 = 0, 14, ν3

21 = 0, 17,
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13 = 0, 15 · 106, G2
13 = 0, 55 · 102, G3

13 = 0, 35 · 104. The layer thicknesses vary along
the meridian in the following fashion:
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.
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TABLE

w

1 2 1 2

T0 P = 8; q3 = 1, 25

t = −π

3
t = −4π

15

150

100

50

0

−0, 0984 −0, 5322 0, 6234 0, 9705

−0, 0815 −0, 3405 0, 5625 0, 7553

−0, 0689 −0, 2903 0, 4214 0, 6832

−0, 0545 −0, 2775 0, 3861 0, 5907

The table contains the solutions of this problem for the deflection w at the points

t = −π

3
,−4π

15
when P = 8, q3 = 1, 25 at the various values of temperature T0. The

problem was solved in nonlinear formulation under both classical (1) and refined theory
(2).
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