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1. Differential Schemes

Let us consider Cauchy problem in Banach space X:
u'(t) + Au(t) = f(t), u(0)=¢p, t>0, (1.1)

where A is linear densely defined closed operator in X, represented in the following
form: A= A; 4+ Ay; A; and A, are also densely defined closed operators in X.

We will consider the approximate solution of the problem (1.1) by the G. Baker and
T.Oliphant symmetrical decomposition scheme. Our aim is to obtain explicit estimates
for approximate solution error. Under the explicit estimates we implicate such a priori
estimates for solution approximation, where constants on the right-hand side do not
depend on the solution of the initial continuous problem, i.e. they represent absolute
constants.

Different types of decomposition schemes are examined in G.I. Marchuk’s well-
known book (see [1] and extensive bibliography added to it).

G. Baker and T. Oliphant symmetrical decomposition differential scheme for ap-
proximate solution of (1.1) problems have the form (see [2],[3]):

(1)
dv,zlt(t) + %Awg)(t) = oof(t), U;E})(tk—l) — w1 (trr), uo(0) = @,
(2)
—dvkdt(t) + A2 (1) = (1= (00 + 00)) f(1), v (trr) = 017 (1),
—du;(t) + %Aluk(t) = a1 (1), uptyr) =0 (), t € [tir,ta), (1.2)

where k =1,2,... &y =k -7,7 > 0 is a time step.
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Approximate value of exact solution of (1.1) problem at point t =t = k7 is u(ty),
U(tk) ~ Uk(tk)

Theorem 1.1. Assume the following conditions are fulfilled:

(a) There exists such wy > 0 , that for any X\ > wy, operator A + A is invertible
and the estimate is valid:

M
—k o _ .
(A4 AI) ||§—(>\_w0)k, M =const >0, k=1,2,--- ;

(b) There exists such wy > 0, that for any & > wy, operators A; + &1, i = 1,2 are
invertible and the following estimates are valid:

1
Ai+€D)7 < ;
(A +€07 <
(¢) D(A™) C D(AT"), m=1,2,3 (i = 1,2); A; operators reflect D(A™), m = 2,3
in D(A™ 1) (A; : D(A™) — D(A™)) and the following inequalities are valid:

[AFull + [ AiAs—sul] < ¢ AJull, u € D(A?),
[ATull + [ A7 As—sul| + [[Ar Az Avul| < c|| Agull, w e D(A?),

where Ag = A — X\ol, Ny is reqular point operator of A; ¢ = const > 0;

(d) f(t) is continuously differentiable function and f'(t) satisfies Lipschitz condi-
tion; for each fized t from [0; +oo[, f(t) € D(A3), f'(t) € D(A) and ¢ € D(A?) ; Than,
if oo = oy, for error of the scheme (1.2) the following estimate will be valid:

HMW—wWWSm[“WﬂAM+/ﬂ%f|W

tg

+TZ IAGS (i) + (1A f (t_s)1l) + ti) +/(tk — 5)e || AR f (s) || ds],  (1.3)

where w = max(wg,w), ¢ = const > 0.

To prove the theorem, we need two lemmas. First of them deals with approxi-
mation of the semigroup by means of the Trotter-type formula and the other - with
approximation of the integral containing semigroup by means of quadratic formula, in
particular, the formula of central rectangle.

Lemma 1.2. If operators A;, As and A satisfy conditions of Theorem 1.1, than
for any natural n the following estimation is valid:

1[0 (V(2)"Tell < Letlazell. ¢ € DAY, (1.4)

V(#) () ()Ul()

where U(t) = exp(—tA) and U;(t) = exp(—tA;) are strongly continuous semigroups
generated by operators A and A; (i =1, ) respectively.
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Proof. According to the property of semigroup:

where 7 = t/n.
The following identity is valid:

(U@E)" = (V)" = D (V) U() = VO ti). (1.6)

Let us evaluate the difference U(7) — V(7).
It is easy to prove that for the semigroup U(t) the following expansion is valid:

n tk N
Ut) = Z(—D’“HA‘“ + RO (1), (1.7)
k=0
where
t s1 so
R(”“)(t) — ”*1/// /U Ydsdspds,_1 -+ ds;.
0 0 0

Applying formula (1.7), we will obtain:

V() = GHUNUI(G) = DU = SA1+ 2 AT+ R ()

T Up(r) Ay + Uy (1) A2 + Un(1) RO (D]

=U1(§)[U2(T)— 5 S 5

(I — 745+ +RP (1) 4,

T 2 0 | @)
:UI(E)[[_TA2+7A2+R2 (7’)— 2

+%2(I + Rgl)(T))A% + UQ(T)R?)(%)]

2
T T T
= U1(§)[[ - 5(2A2 + A+ §(4A§ +4A,A; + A?)

2
FRY (1) = SRE () A+ R ()AL + Ua(n) R ()

2

T T T T

T

et U1(2

T T 7'2 T
PR (1) = 5B (D) Ay + 2 B (1) AT+ Ua(1) R (3)
2
— - %Al + T—Af +R® - g(I - gAl + RPY(24, + A))

+3 (I +R{ ( T)(4A2 + 44,4, + A?)



Explicit Estimates for Error of Approximate .... 23

T T 7'2 T
UGB (1) = 5B (D A+ o By (1) A + Ua(n)RY ()

2
= [ — (A + Ay) + %(Af A Ay + Ap A, + A2) + Ry(1),

where

T) = 233,j(7), (1.8)

Roa(r) = RY(5), Roa(r) = —SRP(G) 242+ A1), Rag(r) = ()R (7).

2
Raa(7) = —5 RS (DA, Rys(r) = §R(1 (2)(4A3 + 44,4, + A2),
Ry () = %ZRg”(T)Af, Ry7(7) = UQ(T)R?)(%)).
As A=A, + Ay and
A? = A2+ Aj Ay + AjA + A3
V(7) will be:
V(ir)=1—-1A+ %2142 + Rs(7). (1.9)
According to the formulas (1.7) and (1.9):
U(t) = V(1) = R® (1) — Rs(7). (1.10)

If, in (1.6) we move to the norms and take (1.10) into consideration, we shall obtain:

I[U(T)" = )"lell < ZII ) TINRD (1) = Ra(r)]U (tia)ell. (1.11)

It is clear that inequality:
7
RO (7) = Re(MIU (b=l < Y 1Ry (MU (tir) el + IR (U (Ei-)ell. - (1.12)

According to conditions (a) and (b) of Theorem 1.1 we have (see [4]):
|U®#)]| < Me*t, (1.13)

[U:()]| < e, (1.14)

According to estimates (1.13) - (1.14) and condition (c) of Theorem 1.1, the follow-
ing is obtained:

2 s1 82

| Roa (MUt )| = [ A3 / / / UL (s)U () pdsdsads |
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r
2 S1 S2

s///||U1 WU o) ||| Al dsdsads, < erdets
0 0

Similarly the following estimates are obtained:

oell, v e D(A%).  (1.15)

HRz,j(T)U( i)l < e

IR® (1)U (1) < ere

From the following representation

OSOH w e D(A3) | = 2737 e 777 (116)

ell. ¢ e D(A?).

ABA = NoI) ™ = (A(A = AoI)™)3 = (I + Ao(A — M) ™13,

we have:

IR®(1)U(ti1)p|| < ere ovll, ¢ € D(A). (1.17)

From (1.12) taking into account (1.15), (1.16) and (1.17) evaluations, the following
is obtained:

IR (1) = Rs(m)U (tima)l| < er’e (| AJpll, » € D(A%). (1.18)

From (1.11) taking into account (1.14) and (1.18) evaluations, the following evalu-
ation is obtained:

U )" = V)"l < el A @IIZ ||U1 NGO )||)n et

< | Ayl Z itn—igWli < o724 ot || Ao (1.19)

=1

The following lemma, required for proving of the main theorem, deals with error
estimate of approximation by means of quadrature formula of the integral containing
semigroup.

Lemma 1.3. Assume operator A and function f(t)) comply with the conditions of
Theorem 1.1. Then the following estimate is valid:

H/ (t — s)f ds—TU(Q)f(%

< et ( / |AF (t)]|dt + T(|]A2f(ti,%)|| +1)), ¢=const >0, (1.20)

ti—1

where U(t) = exp(—tA)) is strongly continuous semigroup generated by operator A |
T=t—ti1 (t; >t_1>0).
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Proof. It is clear that the inequality:

| [ Utts=s)5(s)ds = 0 G)s | < Iull+ Il

where . .
Iy = / Ut —t,_1)f(s)ds — / U(t; — s)f(s)ds,

t
-
L=UG)( [ fs)ds = st ).
ti—1
Let us evaluate [y. Certainly we have:
Iy = Io1 + oo,

Where

ha= [ 0l =tiy) = Ults = )15t s

ti—1

For member Ij ;, the following expression is obtained:

T
[

= [ Wit ~ty) = U= 9() - Fit,y)lds

i= t;—s

:—A/ (]U(t)dt Tf’(t)dt)ds—Ai (/U(t)dt / f'(t)dt)ds.

. T
ti-1 2 i3

(1.21)

(1.22)
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If, in (1.23), we move to the norms and take (1.13) into consideration, we shall
obtain:

t. 1 [ T
73 lis 3 t; 3 s
il < [ [ 1wela [ jaroiads [ ([ 1wl [ ol
ti—1 z s t. 1 t;—s t. 1
2 i-3 i-3
ti—% t;—s ti_% t; z s
gM/ (/e‘“otdt/HAf’(t)Hdt)ds+M/(/e“’otdt/ A (t)||dt)ds
ti—1 % S tif% ti—s ti,%
ti—% ti—% t; t;
<M / ||Af'(t)||dt/(ti_%—s)e‘”O(ti_s)ds—l—M / ||Af’(t)||dt/(s—ti_%)e“’ogds
ti—1 ti—1 ti—l ti—l
2 2
1 7
< TMewis? / JAS ()t
ti—1
Thus, we obtain estimate:
t
o] < cev3r2 / JAF ()t (1.24)
ti—1

For Iy, the following expression takes place:

t,

i—

Ipo = / [U(t; — tz’—%) - U(ti — 5)]f(tz‘—%)d3 + / [U(t;i — ti—%) —U(ti — S)]f(ti—f

ol

;)ds
ti—1 t.

i—

NI

t

3

- | [wti-ey - vt - s, aas

w4 [ [wt-0- vt -1t s

t

i—

t.

i—

N
Nl

T
s 2

= tz/%tl/%tl/tU(f)AQf(tié)dgdtdsjti / U(§)A® f(t,_1)dEdtds.

o ti—
i—g
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If in this equality, we move to norms and take (1.13) into consideration, we receive
the inequality:

byttt

o2l < MIIA?F(t_0)|I( /// “’Oﬁdgdtder/ / / et dédtds)
< Lrer s azse )| (1.25)
~ 48 =3/ :

From (1.22), taking (1.24) and (1.25) inequalities into account, the following eval-
uation is obtained:

t;

Il < | / $)ds — / Ut — 5)f(s)ds|

ti—1

<cerrrt( [ ag @l + 2, ). (1.26)

Let’s evaluate [;. Certainly we have:
t;
-
L=UG)( [ f5)ds+77(t,,)
ti—1

(_)(77 T(f'(ti;)— F/(t))dtds — ] / (f'(8) = f'(t;i_1))dtds).

If in this equality we move to the norms and take into consideration that f’(t)
satisfies Lipschitz condition, we obtain:

JEGIN [ s =ty

z

1
< ce™® // -1—tdtds—|—//t—t dtds)<—c¢e . (1.27)

Z

w\»—‘
m\»-‘

From (1.21), taking (1.26) and (1.27) 1nequaht1es into account, estimate (1.20) is ob-
tained. O
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Proof of Theorem 1.1. As it is known, solution of problem (1.1), by means of
semigroup U(t) = exp(—tA), is expressed by the following formula (see for example

[4],[5]):

t

u(t) =U(t)p + /U(t —s)f(s)ds. (1.28)

According to this formula, for the first equation of (1.2) scheme, we obtain:

w(t) = Uﬂ%(t—tkl))ukl(tkl) + 0 / Ul(%(t—s))f(s)ds.
In t = t; point we have:
(1) T ki 1
(% (tk) = U1(§)uk,1(tk,1) + 09 / Ul(ﬁ(tk — S))f(S)dS (129)

From the second and third equations of (1.2) system, in accordance with (1.28), the
following is obtained:

v (t) = Usy(m)o) + (1 — 09 — 01) / Us(t, — s) f(s)ds, (1.30)
wt) = UGl ) + v [ UG5t = ) (). (1.31)

From (1.31) and (1.29), taking into consideration (1.30), the following is obtained:

() = Uy(5)Ua(m)Ur (5 e (timn) + 0 / U1<§>UQ<T>U1<§<tk — 5))f(s)ds
+(1 — 09— 01) / Ul(%)Ug(tk —s)f(s)ds + o4 / Ul(%(tk —s))f(s)ds. (1.32)

If we assume the designations:

V() = Ui(5)Ue(r)U(3).

Vo(r ) = JoUl(%)UQ(T)Ul(%) (1= 00— o) U D)0(H) + alUl(%),
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(1.32) could be written as:
tg
up(ty) = V(T )ugp—1(txk—1) + / Vo(7,tr — s)) f(s)ds.
tk—1
Hence the following is obtained:
kb
w(t) = (V@) + > [ @OF Nt - s (13)
'L:lti_1
According to formula (1.28) we obtain:
ti
u(tr) = Ul + [ Ut = 5)s(s)ds.
0
Hence the following is obtained:
u(ty) = ) + Z / ty—s))f(s)ds. (1.34)
Taking into consideration the identity
Uty —s) = U(ty—)U(t; — 5) = (U(T))""U(t; — ),
then (1.34) could be written as:
u(ty) = o + Z / Ut — 5)) f(s)ds. (1.35)
According to formulas (1.33) and (1.35) the following is obtained:
ute) — w(ty) = [(U(1)* = (V(7)* ]
kooU
+> [ U@ = (V) Ut — 8)f(s)ds
zzlti_l
k 4
+ Z(V(T))k_i / [U(t; — s) — Vo(r, t; — s)] f(s)ds. (1.36)
i=1

ti—1

According to Lemma 1.2 the following estimate is valid:

U @) = (V) el < er’tise | Aol




30 Galdava R., Rogava J.

Hence: - | |
Z/II[(U(T))’H—(V(T))'“_Z]U(ti—S)f(S)IIdS
<’y / s | AR (1 — 5) £(s) |ds

k ti k b
< CTQZ / tk,iem’“*iew(t"*s)HASf(S)HdS _ CTQZ / tkfiew(tkis)”A:Sf(S)HdS
i=1 =7

k t; tr
< er? Z /(tk — s)e“’(t’c’s)HA?’f(s)Hds = c7? /(tk — s)e“’(tk’s)\]A3f(s)]\ds.
i:1ti—1 0
Thus, we have:
U ‘
> [ I@@F = Wi - 9 )lds
1:11241
< or? / (b — )<= 43 £ (s)]|ds. (1.37)
0

Let’s rewrite the integral in the second sum of equation (1.36) as follows:
t;
/[U(ti —5) = Vo(r,t; — s)|f(s)ds = Jy + Jo + Js,

ti—1

where
t;

Ji= [ Ut = 9)f(s)ds = ULt~ )5

ti—1

Jy =T1[U(t; — ti_%) — Vo(r,t; — ti—%)]f(ti—

),

1
5
t;
Jy =1Vo(T,t; — ti—%)f(ti—%) - / Vo(r, ti = 5) f(s)ds.
ti—1

It is clear that for J; we have the following expression:
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where
T =GN [ TGt = ) (s)ds = TG = b)),

ti—1

J372 = Ul(g)[ / Ug(ti - S)f(S)dS - TUQ(ti - ti—%)f(ti—%)}v
ha= [ Uit = ) f(s)ds = UG 6~ b ).

In accordance with Lemma 1.3 the following estimates are valid:

t
[ T31]] < ce®177?] / [ALf (@)t + (| AT (8 )] + D],

ti—1

2]l < ce®77?] / [A2f' ()1t + (| ASf (8 )] + 1],

ti—1

13,311 < 66“”72[/ [ALf (@)lldt + (AT (8, 0) 1 + 1)),

ti—1

[RA 06“‘”72[/ IAS @)lldt + (| A*f(t;_1)]| + 1)].

These inequalities, according to condition (c) of Theorem 1.1 provide the following

inequalities:

gl < cerr? / Ao Olldt + (143t I+ D], =123, (139)

Il < cerr? / Aof ®lde + r(11437 e, + 1) (139

According to estimate (1.38), we have for J;:

5]l < cem7] / Ao f"(®)lldt + 7 (|| A5f (£ )1l + 1)]. (1.40)
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Let’s evaluate norm of J,. According to formula (1.7) we have:
Volr. 3) = aom(ngmm(g) + (1= (o0 + o) (5)0(5) + rlh(3)
- JoUl(g)Ug(T) = —A1 + R(2)
= 0l (3) (Ua(r) -
+(1 — (00 + 1)) Us (
= ool (5)[1 = Ty + R (r) - f(f + B (1) Ay + Ua(r) RP(D)]
+(1 = (o0 + o)) () (I = 54 + B () + 1li(7)
— oy [Ul(g) - TU1(§)A2 + U1(§)R2 2 (r)
— UG + B () A+ U () () BP ()]

4

(1= (00 + o)) (U1(5) = FUi(5) A2 + DR () + Ui (D)

T T T T T
= ool — A+ RP(5) —7(I + RYV(5))As — — (I + RP () Ay
2 2 2 4 2
)]

—2 U + B () AL+ Ui(5) RS (7) + Ui (5)Ua(7) R
+(1 = (o0 + o) (I = A+ BY(5) = S+ BV (5) A+ Ui(5)Ra(5))

1

4

+o1(I = TAv+ B (D))

1 1
—o1 + )A1—T(2 0—§U1+ )A2+R2( ),

1 1
ZI—T(ZO'O 1

where

=3 oyl (141)
Raa(7) = (00U (G)Va(7) + )R (7). Raa(r) = —o0 g Ui() B (1) As,

Ryg = 73— 00— o) RV (D) Ar, Raa = (1- o) RY(5),

.
Rys(r) = (1= o) Ui(5) Ry (7).
Thus, we obtained:

1 1 1 1 1
Volr, =) ==1 — T(ZOO 10 + §)A1 — 7(2 0= 5% + )A2 + Ry(7). (1.42)
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For U(%), in accordance with formula (1.7) we have:

U(Z

. ). (1.43)

T T

On the basis of expressions (1.42) and (1.43) we make conclusion: if parameters oy
and oy satisfy the following system

1 L1
10Ty Ty
1 1 1 1

20 Tt Ty

then difference U(3) — Vo(7, 3) will be of the same order as O(7?). Hence o = 0.
Thus, when oy = oy, we have.

T

UG5) = Volr. ) = Ralr) = RO(3).

Do |

where Ry(7) and R®(Z), respectively, are calculated by formulas (1.41) and (1.7). It
is clear that inequality:

||(V0(7'7%)— ¢II<ZHR21 Joll + 1R ()SOH- (1.44)

According to estimates (1.13) and (1.14) and condition (c) of Theorem 1.1 we have:

| Raa ()l = ool (5)Ua(r) + o DR (5o

S cetie //Wh ()l A2¢lldsds, < ere*17|| 42|, @ € D(A?).  (1.45)

Similarly the following estimates are obtained:

1R2(7)ll < er®e* 7| AGell, € D(AY), j =2,3,4,5, (1.46)

IR® mqw// (s)edsds|| < erteri | 4%

< er?ei|| Ao, ¢ € D(A?). (1.47)

From (1.44), taking into account estimates (1.46) and (1.47), the following is ob-

tained: .
1(Vo(r. 5) = U(2))<p|| <er?em||Adgll, ¢ € D(A?). (1.48)
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From (1.36), taking into account estimates (1.19), (1.37), (1.39), (1.40), (1.48). and
(1.14), estimate (1.3) is obtained. O

2. Difference analogue

To find approximate solution of problem (1.1) we apply the difference analogue of
differential decomposition scheme (1.2):

(1) (1) (1) (1)

w =ty 1w 1
—  toh T =aflty) ugy = uko, uo =,
(2) (2) (2) (2)
Uy " — Uy +u
bt A (= (o) () ) =,
(3) (3) (3) (3)
w =y 1w 3 2
S A = (), u?) =l (2.1)

We state as approximate solution at ¢t = t, = k7 point:

U = u,(f’).

Scheme (2.1) is the analogue of difference of (1.2) decomposition differential scheme.
Our goal is to obtain explicit a priori estimate for scheme (2.1).

The following theorem takes place:

Theorem 2.1. Let us assume that the conditions (a),(c),(d) of Theorem 1.1 and
additionally the following condition are fulfilled:

For any 7 > 0, operators [ +TA;, i = 1,2 is invertible and the following inequalities
are valid:

(I —7A)I +7A)7Y < e, w; = const >0,

(I +7A) 7 < e, ¢= const > 0; (2.2)

Then, if og = o1, for error of the scheme (2.1) the following estimate will be valid:

lu(te) — uel] < e[ (b Aol + / 1 Aof ()]l dt

tg

+TZ IASS ()N + Ao f (ti ) + ta) +/(tk — 5)e | AR f ()| ds],  (2.3)

where w = max(wy, 2wy), ¢ = const > 0.
Proof. From (2.1) the following is obtained:

= SuG)uf, + 700 Li(2)f(tey),

(2) SQ( )uk 1 + 7'(1 — (0'0 + 0’1))L2(T)f<tk—%>’

= Si(5 >uk>1+mlL< ) F(t1),

2



Explicit Estimates for Error of Approximate ....

where
Sir) = (1= ZANI+ZA)™", L) = (T + ZA), i=12
Consequently:
ug = V(T)up—1 + 7L(7) f (1), (2.4)
where - .
V()= 51(5)52(7)51(5)
and

L(7) = 00$1(5)82(7)La(5) + (1 = (00 + 1)) i () La(7) + o1 L (5).

From (2.4), through induction the following is obtained:

so+TZ VT IL(r) £ (t 1) (2.5)

2

According to formulas (2.5) and (1.35) the following is received:

ulty) —we = [(U(7)" = (V(7))"]

g k

+ z; /(U(T))k—iU(ti —5))f(s)ds — ;(V(T))k_iL(T)f(ti_%)ds.

Let us write the right-hand side as:

u(ty) —we = [(U(7))" = (V(7))" e + Z / (U () = V()" Ut = 5)f(s)ds

=Y VE) L) = UG ty)
UG~ [ Utk = 9)f(s)as) (2.6)
The following formula is valid: .
(@) = V) e = D (VEN U @) = VI t)e. (2.7)

According to formula (1.7), for U(7) we have:

2
U(r) = I —7A+ A+ RY(), (2.8)
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where C s s

R®(r) = —A3 / / / U(s)dsdsyds; . (2.9)
0O 0 O
The following formulas are valid:
Si(r)=I+R (), R(r) = =S A(I +5,(r)), (2.10)
2
Si(r) = I —7A;+ RO(r), RP(7) = AU +S(7)). (2.11)
72 ® ®) 7

Si(r) = I —7Ai+ AT+ RP(7), BY (1) = — AN + Si(7)). (2.12)

By means of these formulas, the following is obtained:

V() = i DSMSE) = S DS - 1A+ T+ AP ()

2
TSy(r)A; + %52(T)A§ + So(r) R

= S1(5)[S(r) - 5

;
3]
= SiG) —TA + - S+ B (1) = (I = m Ay + RO (1) Ay
72 T
g L+ R (1) AT+ Sa(r)RY ()]
T T (P )
= S5 = 5242 + A)) + (443 + 444, + A7)

2
+HR () = S (DA + RO 0) AL+ U0 RY ()

T 2

T T T T

81 (5) (R(r) = 575 (1) A+ 8R ()42 + So(r) R ()

2
_ - %Al + %Ai + Rf’)(f) -

7_

8

T T T
S = 5 A+ R () (24: + A)

(I+ R! ( TY(4A2 + 44,4, + A2)

+51 (RS () = SR (1) A + TR ()42 + Ua(n) RO (D))

8 2
2

= L= 7(A+ A+ AT+ Ay AsAs + 43) 4 o),
where

T) = ZR?,J(T), (2.13)
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Raa(7) = == (31 = $1(5)S(1) (I + 51(5) AL,

3
Rao(7) = =1 (1 + S1(3)) (A Ay + A1.43),

3
Rss(7) = —%651(%)([ +So(7)) (2424, + Ay A2),

Raa(r) = =7 (S1(5) AdeAr, Ras(r) = —2S1(Z)(1 + Sa(r)) 43,

As A= A; + Ay and
A2 - A% -+ AlAQ —+ A2A1 -+ Ag,

therefore V(1) will be expressed as:
-2
V(r)=1-1A+ EAQ + Rs(7). (2.14)
According to formulas (2.8) and (2.14) we have:
U(r) = V(r) = R® (1) — Rs(7). (2.15)

where R (7) and Rs3(7), respectively, are calculated by formulas (2.9) and (2.13).
According to the conditions (a) of the Theorem 1.1 and (2.2), we have:

[U(T)[| < Me=eT, (2.16)

T T T T
VI = 151(Z)8:(7)S1(H)]] < ez 7ets < e, (2.17)
From (2.7), taking into account (2.15), (2.16), (2.17), and the cinditions (c) of the
Theorem 1.1, we obtain:
U ()" = V(1) ell < ertie* | Agell. (2.18)

Let us evaluate difference L(7) — U(3).
The following formula is valid:

2
Li(r)=1— %Ai + %A?Li(T),

According to this formula and formulas (2.10) - (2.12), we have:

T

L(7) = 0081(5)S2() L1 (5) + (1 = (00 + 1) () La(7) + 1 L (3)

_ 0051(2)52(7) (71— %Al + I—GLl(g)AR) + (1= (00 + al))sl(g)Lg(T) + alLl(g)

2

_ aosl(g)(sz(f) _ %SZ(T)Al + %SQ(T)Ll(g)AR)
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+(1 = (00 + 1)) Si(5)La(r) + alLl(%)

= oS (D)~ s BX(7) ~ T+ B )AL+ TS () A
+(1 = (00 + o) SUF) (I = FA + T Lo(r)A3) + 1 La(5)
= 00S1(5)[S1(5) = TS(5) A2 + Si(5) B (7) = T + B (7) Ay

6

T T
2 4

+ =515 )52<T)L1(§)A12}

+(1—(Uo+01))(51( ) — 51( )As + 51( ) ()A§)+01L1(%)

T T
= oo[l = 3A + B () (I + R <§>>A2 — U+ RPE)A

TS0+ RV A+ SR 0TS (D)) L(D)A]

T

ST+ RV(E)A + 51(5) Lo(7)43)

+(1 = (00 +01)) (I — ZAl n R&”(-) -

2

T
+O’1 (I — —A1 + 16L1(§)A%)

1 1 1

1
=1 —T(400 — 70t 2)A1 — 7(200 — 501 + )Ag + Ry(7),

where

T) = ZRQ,]-(T), (2.19)

Raa(7) = 1—6(31+351< )+ SE)SML(G

Roa(r) = Z51(5)@ + sl(g) + Lo(1)) A2,

3 2 2
Rys = %(1 n Sl(%))AlAQ, Roy = %Sl(g)(z 4 Sy (7)) As Ay

Thus we obtained:

1 1 1
L(r)=1-— T(ZO‘O i + §)A1 —7(

In accordance with formula (1.7), for U(
T

U(=

) =1- %(A1 + Ag) + R<2>(%), (2.21)

R@) = A? / / U(s)dsdt. (2.22)
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On the basis of expressions (2.20) and (2.21) we conclude: if parameters oy and o4
satisfy the following system

1 S
10T Ty Ty
1 1 1 1

then difference L(7) — U(%) will be of the same order as O(7?). Hence o = 0.

Thus, when oy = 01, we have:

L(7) - U(3) = Ralr) = RA(3),

(\]

where Ry(7) and R (Z), respectively, are calculated by formulas (2.19) and (2.22). It
is obvious that inequality:

I(L) = UGl < Yo lIRes(ell + 1RO (Gl (2:23)

From (2.23), taking into account evaluations (1.45) - (1.47), the following is ob-

tained:
-

2
From (2.6), taking into account evaluations (1.39), (1.13), (2.17), (2.18) and (2.24)
evaluation (2.3) is obtained. O
The estimates, given in the Theorems 1.1 and 1.2, were made by the author has
earlier and were published in the paper [6].

I(L(7) = U(5)ell < er’e"||AGell, @ € D(A?). (2.24)
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