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Abstract

An a priori energy estimate analogous to the inequalities expressing St. Venant’s principle in

elasticity theory is obtained for the solution of one 4-th order differential equation elliptic type with

the conditions of the first boundary-value problem in an n-dimensional domain. These estimates

are used to study the behavior of the solution and its derivatives near irregular boundary points

and as a consequence of the geometric properties of the boundary in a neighborhood of these

points.
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In this article we consider the solution of one 4-th order differential equation elliptic
type with Dirichlet boundary conditions in an n-dimensional domain. We obtain a
priori estimates analogous to the energy inequalities expressing St. Venant’s principle
in elasticity theory (see, for example, [1], [4]). On the basis of these estimates we
investigate the behavior of solutions of one 4-th order differential equation and their
derivatives near irregular boundary points.

A priori estimates analogous to the energy inequalities expressing St. Venant’s prin-
ciple in elasticity theory of one 4-th order differential equation enable us in the case
when coefficients dependent only one argument to prove theorems for the generalized
solution of the Dirichlet problem in the plane domain.

Inequalities of St. Venant type differ from the usual energy estimates in that they
estimate the Dirichlet integral over a domain Ω1 ⊂ Ω in terms of the Dirichlet integral
over a larger domain Ω2 ⊃ Ω1, with a coefficient depending on the distance ρ from
Ω1 to the boundary of Ω2, which does not belong to ∂Ω. Here it is assumed that
the Dirichlet boundary conditions on ∂Ω ∩ ∂Ω2 are homogeneous. The nature of the
decrease in this coefficient with increasing ρ depends on the geometric properties of Ω2.
The coefficient can be determined by solving a certain ordinary differential equation
or differential inequality – with special initial data.

In this article we consider some properties the solution of one 4-th order differential
equation elliptic type

∆[a(x)∆u(x)] + bαβ(x)u,αβ(x) = f(x) (1)

in the a domain Ω which lies in Rn
+ = {(x1, . . . , xn), x1 ≥ 0} with boundary conditions

u|∂Ω = ϕ,
∂u

∂ν

∣∣∣
∂Ω

= ϕ2, (2)
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where ∆ is the Laplas operator, Greek indeces α and β on the value 1 and n and
summation over the repeated indices from 1 to n is assumed ν is the direction of
external normal to the boundary ∂Ω and

u,α ≡ ∂u

∂xα

, u,αβ ≡ ∂2u

∂xαxβ

, α, β = 1, . . . , n.

When an equation is studied for two arguments this equation is 4-th order elliptic
differential equation, which is “Equation of now-homogeneous elastic plane body” – [1]
and we have studied this equation in the works [2], [3] and [4].

But in the work [3] it is studied, when coefficient of equation depends on the only
one argument.

The present paper covers the case, when the number of arguments is more then two
and when coefficients of equation (1) depends only on argument x1 (a,i ≡ ∂a

∂xi
= 0 and

bαβ
,i ≡ ∂bαβ

∂xi
= 0, i = 2, n).

Definition. Let Ω be a bounded domain in Rn
+. A function u(x) is called a gener-

alized solution of equation (1) in Ω with Hm(Ω, j) and satisfies the integral identity:

∫

Ω

[
a(x)u,αβv,αβ +

n∑
j=2

a,11u,jjv dx + bαβu,αβv
]
dx

=

∫

Ω

f(x)v(x) dx (3)

for any function v ∈ Hm(Ω, ∂Ω); here f ∈ L2(Ω).

Let functions µ(t), Mi (i = 0, 1) and W (u) such that:

0 ≤ µ(t) ≤ inf
u∈ Γ

{ ∫

St

a(x)u,αβu,αβ dx2

∣∣∣
∫

St

a(x)B2(u) dx2

∣∣∣
−1}

, (4)

0 ≤ M0(t) ≤ inf
u∈ Γ

{ ∫

St

a(x)u,αβu,αβ dx2

∣∣∣
∫

St

a(x)u2 dx2

∣∣∣
−1}

, (5)

0 ≤ M1(t) ≤ inf
u∈ Γ

{ ∫

St

a(x)u,αβu,αβ dx2

∣∣∣
∫

St

a(x)u,αu,α dx2

∣∣∣
−1}

, (6)

W (u) ≡ a(x)u,αβ · u,αβ, (7)

where St = Ω ∩ {x : x1 = t} and consists of finitely many bounded domains whose
boundaries belong to ∂Ω; Γ is the set of 2 times continuously differentiable functions
in a neighborhood of St such that u(x) = u,1(x) = u,2(x) = 0 on St ∩ ∂Ω; B2(u) ≡
u,αu,α − u,11u at all i = 0, n.

When coefficients are dependents on only from argument x1, that why satisfied
conditions correspondingly:

a(x) > 0, |bαβ(x)| ≤ η0(x1)a(x),

|a,1(x)| ≤ η1(x1)a(x), |a,11(x)| ≤ η2(x1)a(x),
(8)
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where η0(t), η1(t), η2(t), t ∈ [0, T ] arbitrary functions with conditions:

|η0(t)| ≤ min
{1

4
,
M0(t)

32

}
,

|η1(t)| ≤ min
{1

4
,
M1(t)

16

}
, |η2(t)| ≤ min

{M1(t)

16
,
M0(t)

16

}
.

Theorem 1. Let a bounded domain Ω be studied in the half-space Rn
+. The set St

is nonempty for all t ∈ (0, T ], T = const > 0, and coefficients a(x) and bαβ(x) satisfies
conditions (8). f(x) = 0 on Ω∩ΩT . Then, for the generalized solution u(x) of equation
(1) in the domain ΩT , with the boundary conditions u = ∂u/∂ν = 0 on ∂Ω ∩ ∂ΩT (if
it exists), the following estimates are valid:

∫

ΩT

a(x)u2(x)M0(x1)Φ(x1, T, ε) dx

≤ k1

∫

ΩT

a(x)u,αβ · u,αβΦ(x1, T, ε) dx ≤ 1

ε

∫

ΩT

W (u) dx, (9)

∫

ΩT

u,αu,αM1(x1)Φ(x1, T, ε) dx

≤ k2

∫

ΩT

a(x)u,αβ · u,αβΦ(x1, T, ε) dx, (10)

where ε = const ∈ (0, 1/2), k1 and k2 are positive constants, which depends from
geometrical structure of domain ΩT and coefficients of equation (1).

The function Φ(x1, T, ε) is a solution of the following Cauchy problem:

2|Φ,11(x1, T, ε)| = (1− ε)µ(x1)Φ(x1, T, ε) (11)

for 0 ≤ x1 ≤ T with the initial conditions:

Φ(T, T, ε) = 1, Φ,1(T, T, ε) ≡ d

dx1

Φ(T, T, 0) = 0. (12)

Proof. Let us construct a function ψ(x1, δ), assuming that

ψ(x1, δ) ≡
{

Φ(x1, T, ε) for 0 < δ ≤ x1 ≤ T,
(x1 − δ)Φx1(δ, T, ε) + Φ(δ, T, ε) for 0 ≤ x1 ≤ δ.

It is easy to see that: v(x) ≡ u(x)(ψ(x1, δ) − 1) ∈ Hm(ΩT , ∂ΩT ). Substituting the
function v(x) = u(ψ − 1) into the integral identity (3) for ΩT , we obtain

∫

ΩT

[
a(x)u,αβu,αβ(ψ − 1)a(x)u,αβu,αψ,β
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+a(x)u,αβu,βψ,α + a(x)u,αβuψ,αβ

+
n∑

j=2

a,11u,jju(ψ − 1) + bαβ(x)u,αβ(x)u(ψ − 1)
]
dx = 0.

In the derivation of the last equality we have used integration by parts, which can
easily be justified if we approximate u(x) by functions of class C2(ΩT ) equal to zero
in the neighborhood of ∂Ω ∩ ∂ΩT , and use the fact that ψ,α = 0 if α 6= 1 for x1 = T .
Taking into account that ψ is independent of xj, j = 2, n, we find that:

∫

ΩT

[a(x)u,αβu,αβ(ψ − 1)] dx

=

∫

ΩT

a,1u,βu,βΦ,1 dx−
∫

ΩT

bαβu,αβu(ψ − 1) dx

+

∫

ΩT \Ωδ

(a(x)u,αu,α − a(x)u,11u)ψ,11 dx

−
∫

ΩT

a,11u,jju(ψ − 1) dx. (13)

We put p(u) ≡ a(x)u,αu,α − a(x)u,11u.

Let un be a sequence of functions twice continuously differentiable in ΩT , which are
equal to zero in the neighborhood of the set ∂Ω∩ ∂ΩT , converging to u(x) in the norm
as n →∞. It is easy to see that

∫

ΩT \Ωδ

p(u)ψ,11 dx =

∫

ΩT \Ωδ

p(un)ψ,11 dx + εn,

where εn → 0 as n →∞. From the definition (4) of the function µ(t) and the equation
for Φ(x1, , T, ε), it follows that

∣∣∣
∫

ΩT \Ωδ

p(un)Φ,11 dx
∣∣∣ ≤

T∫

0

Φ,11(x1, T, ε)
∣∣∣
∫

St

p(un) dx2

∣∣∣ dx1

≤
T∫

δ

Φ,11(x1, T, ε)

µ(x1)

∣∣∣
∫

St

W (un) dx2

∣∣∣ dx1

= (1− ε)

∫

ΩT \Ωδ

W (un)Φ(x1) dx.
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Letting n in this inequality go to ∞, we obtain
∣∣∣

∫

ΩT \Ωδ

p(u)Φ,11 dx
∣∣∣ ≤ (1− ε)

∫

ΩT \Ωδ

W (u)Φ(x1, T, ε) dx. (14)

From this and (13) we conclude that
∫

ΩT

a(x)u,αβu,αβψ(x1, δ) dx

≤
∫

ΩT

W (u) dx + (1− ε)

∫

ΩT \Ωδ

W (u)Φ(x1, T, ε) dx

+
1

4

∫

ΩT

W (u)(ψ − 1) dx +
1

4

∫

ΩT

a(x)u2(ψ − 1) dx.

Letting δ → 0

k1

∫
W (u)Φ(x1, T, ε) dx ≤

∫
W (u) dx.

The remaining inequalities (9), (10) for the functions un follow immediately from
the definitions of M0 and M1. Further, passing to the limit as n → ∞, we obtain the
desired inequalities for u. The Theorem 1 is proved.

Theorem 2. (Analogue of Saint–Venant’s principle) Under the conditions of Theo-
rem 1 when coefficients a(x) and bαβ(x) satisfies conditions (8) for any 0 < t0 ≤ t1 ≤ T

∫

Ωt0

a(x)(1− k(x1))u,αβu,αβ dx

≤ 1

Φ(t0, t1)

∫

Ωt1

a(x)(1− k(x1))u,αβu,αβ dx,
(15)

where function Φ(x1, t1) satisfies for t0 ≤ x1 ≤ t1, the ordinary differential equation

2|Φ,11(x1, t1)| = (1− k(x1))µ(x1)Φ(x1, t1),

Φ,1(x1, t1) ≤ 0, Φ(x1, t1) ≥ 1
(16)

and conditions:
Φ(t1, t1) = 1, Φ,1(t1, t1) = 0. (17)

Now we proved Theorem 3 and Theorem 4, when ΩT ⊂ R2
+.

Theorem 3. Under the conditions of Theorem 1, when coefficients a(x) and bαβ(x)
satisfies conditions (8) hold estimate:

a(x)u2(x)M
1/4
0 (x1)M

1/2
1 (x1)Φ(x1, T, ε)

≤ (3(1 + η1)ε
−1 + ηε−1)

∫

ΩT

a(x)u,αβu,αβ dx,
(18)
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where the functions Φ, M0 and M1 are defined in Theorem 1.
Moreover, it is assumed that M0 and M1 are nonincreasing functions continuously

differentiable for 0 < x1 ≤ T .
Proof. Since, by definition, u(x) belongs to H2(Ω, j), where j = ∂Ω ∩ ∂ΩT there

exists a sequence of functions un such that un → u as n → ∞ and un = 0 in a
neighborhood of j. We define the functions un outside the set ΩT by assining the value
zero. We define functions Φδ, M0δ and M1δ in such a way that Φδ = Φ, M0δ = M0

and M1δ = M1 for x1 > δ; Φδ, M0δ and M1δ are bounded, monotone and continuously
differentiable with respect to x1 for 0 < x1 ≤ T , and Φδ ≤ Φ, M0δ ≤ M0 and M1δ ≤ M1.
We estimate

a(x)u2
n(x)Φδ(x1, T, ε)M

1/4
0δ (x1)M

1/2
1δ (x1) ≡ a(x)u2

n(x)ϕδ(x1).

We note that for a certain σ = σ(n) the function un(x) is equal to zero in Ωσ. Hence
we may write

a(x)u2
n(x)ϕδ(x1) =

x1∫

0

∂

∂x1

(a(x)u2
n(x)ϕδ(x1)) dx1

=

x2∫

0

2unun1a(x)ϕδ(x1) dx1 +

x1∫

0

u2
na(x)ϕδ,1 dx1 +

x1∫

0

a1(x)u2
nϕδ dx1.

Since ϕδ,1 ≤ 0,
a(x)u2

n(x)ϕδ(x1)

≤
T∫

0

(un,1)
2a(x)M

1/2
1δ Φδ dx1 +

T∫

0

u2
na(x)M

1/2
1δ M

1/2
0δ Φδ dx1

+η1

T∫

0

a(x)u2
nϕδ dx1.

It is easy to see that:
T∫

0

(un,1)
2a(x)M

1/2
1δ Φδ dx1

≤
∫

ΩT

(un,1)
2a(x)M1δΦδ dx +

∫

ΩT

a(x)(un,12)Φδ dx.

Analogously we have
T∫

0

u2
na(x)M

1/2
1δ M

1/2
0δ Φδ dx1

≤
∫

ΩT

a(x)u2
nΦδM0δ dx +

∫

ΩT

a(x)(un,2)
2ΦδM1δ dx.
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From these inequalities it follows that

a(x)u2
n(x)ϕδ(x1)

≤
∫

ΩT

a(x)(un,12)
2Φδ dx +

∫

ΩT

a(x)(un,1)
2ΦδM1δ dx

+

∫

ΩT

a(x)u2
nΦδM1δ dx +

∫

ΩT

a(x)(un,2)
2ΦδM1δ dx

+η1

∫

ΩT

a(x)(un,2)
2ΦδM1δ dx + η1

∫

ΩT

a(x)u2
nΦδM1δ dx

+η1

∫

ΩT

a(x)u2
nΦδ dx,

where

η1

T∫

0

a(x)u2
nϕδ dx1 ≤ η1

T∫

0

a(x)(un,2)
2ΦδM1δ dx

+η1

∫

ΩT

a(x)u2
nΦδ dx + η1

∫

ΩT

a(x)u2
nϕδM1δ dx.

Thus, for x ∈ ΩT ,

a(x)u2
n(x)ϕδ(x1)

≤
∫

ΩT

W (un)Φδ(x) dx + (1 + η1)

∫

ΩT

a(x)(un,α)2ΦδM1δ dx

+(1 + η1)

∫

ΩT

a(x)u2
nΦδM1δ dx + η1

∫

ΩT

a(x)u2
nΦδ dx.

Using the definition of M0(x1) and M1(x1), we obtain

a(x)u2
n(x)ϕδ(x1)

≤ 3(1 + η1)

∫

ΩT

W (un)Φ(x1) dx +

∫

ΩT

Φδ(x)W (un) dx

+

∫

ΩT

a(x)(u,α)2Φδ(x1)(1 + η1)M1δ dx + (1 + η1)

∫

ΩT

a(x)u2ΦδM1δ dx

+η1

∫

ΩT

a(x)u2Φ(x1) dx.
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We pass to the limit as n →∞. For any fixed x ∈ ΩT and δ < x1, we find that:

∫

Ωδ

a(x)ΦδW (u) dx +

∫

Ωδ

a(x)(u,α)2Φδ(x1)(1 + η1)M1δ dx

+(1 + η1)

∫

Ωδ

a(x)u2ΦδM1δ dx

≤
∫

Ωδ

a(x)u,αβu,αβΦ dx + (1 + η1)

∫

Ωδ

a(x)(u,α)2ΦM1 dx

+(1 + η1)

∫

Ωδ

a(x)u2Φ(x1)M0(x1) dx.

By virtue of (9), the right-hand side of this inequality tends to 0 as δ → 0. We have

a(x)u2(x)ϕ(x1)

≤ 3(1 + η1)ε
−1

∫

ΩT

a(x)u,αβu,αβ dx + η1

∫

ΩT

a(x)u2Φ(x1) dx

≤ (3(1 + η1)ε
−1 + ηε−1)

∫

ΩT

W (u) dx,

where η ≡ η1 · 1/{max M0}.
The theorem is proved.
Theorem 4. Let a bounded domain Ω be situated in the helfs-plane R2

+. The set
St is nonempty for all t ∈ [0, T ], T = const > 0, and coefficients a(x) and bαβ(x)
satisfies conditions (8). Let u(x) be the generalized solution of equation (1) in ΩT , with
boundary conditions u = ∂u/∂ν = 0 on ∂Ω ∩ ∂ΩT and f = 0 in ΩT . Then for any
0 < t0 < t1 < T

a(x) max
Ωt0

|u|2 ≤ p(t0)

Φ(t0, t1)

∫

Ωt1

a(x)u,αβu,αβ dx,

where function Φ(x1, t1) satisfies, for t0 ≤ x1 ≤ t1, the ordinary differential equation

Φ,11(x1, t1)− µ(x1)Φ(x1, t1) = 0

and the initial conditions:

Φ(t1, t1) = 1, Φ,1(t1, t1) = 0

and
p(t0)≡

(
1+(1+η1) sup

0<x1≤t0

(M0(x1))
−1+(1+η1) sup

0<x1≤t0

(M1(x1))
−1

)
.
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Proof. Let un be a sequence of functions twice continuously differentiable in ΩT ,
which are equal to zero in the neighborhood of the set ∂Ω∩ ∂ΩT . We extend un(x) by
zero outside Ωt1 . For x ∈ Ωt0 we have

a(x)u2
n(x) =

x1∫

0

2a(x)unun1 dx1 +

x1∫

0

a1u
2
n dx

≤
t1∫

0

a(x)u2
n dx1 +

t1∫

0

a(x)u2
n,1 dx + η1

t1∫

0

a(x)u2
n dx1,

a(x)(un,1)
2 ≤

∞∫

−∞

a(x)un,1 dx2 +

∞∫

−∞

a(x)un,12 dx2. (19)

Hence (a,2 = 0),

t0∫

0

a(x)(un,1)
2 dx1 ≤

∫

Ωt0

a(x)(un,1)
2 dx +

∫

Ωt0

a(x)(un,12)
2 dx.

In exactly the same way we obtain:

t0∫

0

a(x)(un)2 dx1 ≤
∫

Ωt0

a(x)(un)2 dx +

∫

Ωt0

a(x)(un,2)
2 dx.

Therefore, from (19) we conclude that

a(x)u2
n(x) ≤

∫

Ωt0

a(x)(un)2 dx +

∫

Ωt0

a(x)(un,2)
2 dx

+

∫

Ωt0

a(x)(un,1)
2 dx +

∫

Ωt0

a(x)(un,12)
2 dx

+ η1

∫

Ωt0

a(x)(un)2 dx + η1

∫

Ωt0

a(x)(un,2)
2 dx.

From the definitions (5) and (6) of the functions M0(x1) and M1(x1) we have

a(x)u2
n(x)

≤ sup
0<x1≤t0

(M0(x1))
−1

[ ∫

Ωt0

a(x)M0(x1)u
2
n(x) dx+ η1

∫

Ωt0

a(x)M0(x1)u
2
n dx

]

+ sup
0<x1≤t0

(M1(x1))
−1

[
η1

∫

Ωt0

a(x)M1(x1)(un,2)
2(x) dx
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+

∫

Ωt0

a(x)M1(x1)(un,α)2 dx
]

+

∫

Ωt0

a(x)u,αβu,αβ dx

≤
∫

Ωt0

W (un)
[
1+sup(M0(x1))

−1(1+η1)+sup(M1(x1))
−1(1+η1)

]
dx

≡ p(t0)

∫

Ωt0

W (un) dx.

Passing to the limit as n →∞, we obtain

a(x)u2(x) ≤ p(t0)

∫

Ωt0

a(x)u,αβu,αβ dx.

The theorem is proved.
Now we conside unbounded domain.
Definition. Let Ω be an unbounded domain in Rn

+. A function u(x) is called a
generalized solution of equation (1) in Ω with boundary conditions j = ∂Ω ∩ ∂Ω+

T ,
T = const > 0, ∀ t > T u(x) ∈ Hm(Ω(t, T )), ∂Ω(t, T ) ∩ ∂Ω and satisfies the integral
identity (3) for an function v ∈ Hm(Ω(t, T ), ∂Ω(t, T )).

Theorem 5. Let u(x) be the generalized solution of equation (1), (2) in Ω, with
boundary conditions j = ∂Ω ∩ ∂Ω+

T , T = const > 0, u(x) ∈ Hm(Ω+
T , ∂Ω+

T ∩ ∂Ω) and
∂a(x)

∂x1

≤ 0. Then, for any ∀ t > T

+∫

ΩT

a(x)u,αβu,αβ dx ≤ k∗

ψ(x, T )

∫

Ω+
T

W (u) dx,

where function ψ is a solution of the following Cauchy problem.
Proof. Let Φ(x) ∈ C2[T,∞), Φ(T ) = 0, Φ1(T ) = 0, Φ(x1) ≥ 0 (Φ(x1) = ax + b,

a, b = const, when x1 > T + dl). It is easy to see that:

v(x) ≡ u(x)Φ(x1) ∈ Hm(Ω(t, T ), ∂Ω(t, T ))

into the integral identity (3) for Ω+
T , we obtain:

∫

Ω+
T

[
a(x)u,αβu,αβΦ(x1) + a(x)u,αβu,αΦ,β + a(x)u,αβu,βΦ,α

+a(x)u,αβuΦ,αβ + bαβu,αβuΦ +
∑

a,iiu,jjΦu− 2
∑

a,iju,ijuΦ
]
dx

−
∫

Ω+
T

a1(x)u,αu,αΦ,1 dx = 0.
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In the derivation of the last equality we have used integration by parts, we find
that:

∫

Ω+
T

[
a(x)u,αβu,αβΦ(x1)+

∑
a,iiu,jjΦu−2

∑
a,iju,ijuΦ+bαβu,αβuΦ

]
dx

−
∫

Ω(T,T+δ)

(a(x)u,αu,α − a(x)u,11u)Φ,11 dx

−
∫

Ω+
T

a1(x)u,αu,αΦ,1 dx

or ∫

Ω+
T

a(x)u,αβu,αβΦ(x1) dx ≤
∫

Ω(T,T+δ)

p(u)Φ,11 dx

−
∫

Ω+
T

(
bαβu,αβuΦ +

∑
a,iiu,jjuΦ− 2

∑
a,iju,ijuΦ

]
dx.

The function’s make more precise

Φδ ≡




Φ(x1) for T < x1 < δ
a sin(x1 − δ) + aδ + b for δ < x1 < δ + π/2
a(1 + δ)x1 + b for δ + π/2 < x1 < ∞

and following v(x) = u(x)Φδ(x1). We have
∫

Ω+
T

a(x)u,αβu,αβΦδ(x1) dx

≤
∫

Ω(T,T+δ)

p(u)Φ,11 dx +

∫

Ω(δ,δ+π
2
)

p(u)Φ,11 dx

−
∫

Ω+
T

[
bαβu,αβuΦ +

∑
a,iiu,jjuΦ− 2

∑
a,iju,ijuΦ

]
dx,

where ∫

Ω+
T

(
bαβu,αβuΦ +

∑
a,iiu,jjuΦ− 2

∑
a,iju,ijuΦ

)
dx

≤ 1

2

∫

ΩT

η0a(x)u2Φ(x1) dx

+
1

2

∫

ΩT

η0u,αβu,αβa(x)Φ(x1) dx +

∫

ΩT

∑
a(x)ηiju

2
ijΦ dx
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+

∫

ΩT

( ∑
a(x)ηiju

2Φ +
1

2

∑
a(x)ηiiujjΦ +

1

2

∑
ηiia(x)u2Φ

)
dx

≤
∫

Ω+
T

(1

2
η0 + (n− 1)2ηmax

)
a(x)u2Φ dx

+

∫

Ω+
T

(1

2
η0 + ηmax

)
a(x)u,αβu,αβΦ dx.

Now, let δ = t and

Φ(x1) =

{
ψ(x1, T )− 1 for T ≤ x1 ≤ t
ψ,1(t, T )(x1 − t) + ψ(t1, T )− 1 for t < x1 < ∞

∫

Ω+
T

a(x)u,αβu,αβΦ(x1) dx ≤
∫

Ω(T,t)

p(u)ψ,11(x1, T ) dx

+

∫

Ω(T,t)

(1

2
η0 + (n− 1)2ηmax

)
a(x)u2(ψ − 1) dx

−
∫

Ω+
t

(1

2
η0 + (n− 1)2ηmax

)
a(x)u2 dx

+

∫

Ω+
t

(1

2
η0 + (n− 1)2ηmax

)
a(x)u2(Φ(x1) + 1) dx

+

∫

Ω(T,t)

(1

2
η0 + ηmax

)
a(x)u,αβu,αβΦ dx

−
∫

Ω+
t

(1

2
η0 + ηmax

)
a(x)u,αβu,αβ dx

+

∫

Ω+
t

(1

2
η0 + ηmax

)
a(x)u,αβu,αβ(Φ + 1) dx.

Let un be a sequence of functions twice continuously differentiable in Ω(T, t), which
are equal to zero in the neighborhood of the set ∂Ω(T, t) ∩ ∂Ω, converging to u(x) in
the norm. It is easy to see that

∫

Ω(T,t)

p(u)ψ,11(x1, T ) dx =

∫

Ω(T,t)

p(un)ψ,11(x1, T ) dx + εn
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from (14), we have

∣∣∣
∫

Ω(T,t)

p(u)ψ,11(x1, T ) dx
∣∣∣ ≤

∫

Ω(T,t)

a(x)u,αβu,αβψ(x1, T ) dx

the following estimates are valid:

∫

Ω+
t

W (u) dx ≤ k∗

ψ(t, T )

∫

Ω+
t

W (u) dx.

The theorem is proved.

Remark 1. Under the conditions of Theorem 5, when
∂a

∂x1

≤ 0 holds estimates:

∫

Ω+
t

a(x)Φ(x1, T, ε)a(x)u,αβu,αβ dx ≤ ε−1

∫

Ω+
t

a(x)u,αβu,αβ dx,

∫

Ω+
t

a(x)Φ(x1, T, ε)M0(x1)u
2 dx ≤ ε−1

∫

Ω+
t

a(x)u,αβu,αβ dx,

∫

Ω+
t

a(x)u,αu,αΦ(x1, T, ε)M1 dx ≤ ε−1

∫

Ω+
t

W (u), dx,

where the function Φ is defined in Theorem 1.
The author is deeply grateful to I. N. Tavkhelidze for a useful discussion of the

questions considered in this article.
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