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Abstract

The paper deals with the inverse problem of the cylindrical problem of the cusped plate with

variable flexural-rigidity in case of a strip.
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In 1955 I. Vekua raised the problem of investigation of cusped plates (see [1], [2]),
i.e., such ones whose thickness on the part of the plate boundary or on the whole one
vanishes. Problems connected with the investigation of cusped plate have received much
attention in the mathematical and engineering scientific literature (see brief survey, e.g.,
in [3], [4]). The methods developed for studying such kind of plates can be used for
the plate with variable flexural-rigidity in case of smooth changeable thickness.

The paper deals with the inverse problem of the cylindrical problem of the plate
with variable flexural-rigidity in case of an infinite strip.

Let us consider the plate with variable flexural-rigidity whose projection on the
complex plane z = x + iy is an infinite strip as follows

Π = {−∞ < x < ∞; 0 ≤ y ≤ 1},

and let the edges of the plate are freely supported.

We have to determine flexural-rigidity of the plate if the deflection of the middle
plane is given by the following expression

w(x, y) = εy(1− y),

where ε is given positive constant.

It is a well known that bending equation of the plate with variable flexural-rigidity
in case of smooth changeable thickness can be written as follows

∂2M1(x, y)

∂x2
+ 2

∂2M12(x, y)

∂x∂y
+

∂2M2(x, y)

∂y2
= −q(x) (1)
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where

M1(x, y) = −D(x, y)

[
∂2w(x, y)

∂x2
+ σ

∂2w(x, y)

∂y2

]
,

M2(x, y) = −D(x, y)

[
∂2w(x, y)

∂y2
+ σ

∂2w(x, y)

∂x2

]
,

M12(x, y) = (1− σ)D(x, y)
∂2w(x, y)

∂x∂y
,

(2)

M1 and M2 are bending moments, M12 is twisting moment, D(x, y) =
2Eh3(x, y)

3(1− σ2)
is a

flexural-rigidity of the plate, σ is a Poison’s ratio.
After substituting (2) into (1) we obtain the following differential equation

D∆∆w + 2
∂D

∂x

∂∆w

∂x
+ 2

∂D

∂y

∂∆w

∂y

+∆D∆w − (1− σ)

(
∂2D

∂x2

∂2w

∂y2
−−2

∂2D

∂x∂y

∂2w

∂x∂y
+

∂2D

∂y2

∂2w

∂x2

)
= q,

(3)

where ∆ is a Laplace operator. We will solve equation (3) under following boundary
conditions

w(x, 0) = w(x, 1) = 0, M2(x, 0) = M2(x, 1) = 0. (4)

Taking into account of the form w(x, y), from the equation (3) for D(x, y) we get
the elliptic type differential equation as follows

∂2D(x, y)

∂y2
+ σ

∂2D(x, y)

∂x2
= −q(x)

2ε
(5)

under following boundary conditions

D(x, 0) = D(x, 1) = 0 (6)

After consideration the following functions

D∗(x, y) = D(
√

σ x, 1), g′′(x) = q(x), Φ(x, y) = D∗(x, y) +
1

2ε
g(x), (7)

for Φ(x, y) we get Dirichlet Problem in the strip Π

∆Φ(x, y) = 0; Φ(x, 0) = Φ(x, 1) =
1

2ε
g(x). (8)

Let g(x) ∈ L, using Fourier transform with respect to the variable x from (7) we
obtain

d2Φ̂(t, y)

dy2
− t2Φ̂(t, y) = 0, Φ̂(t, 0) = Φ̂(t, 1) =

1

2ε
ĝ(x) (9)

where

Φ̂(t, y) = Fx[Φ(x, y)] =
1√
2π

+∞∫

−∞

Φ(x, y)e−ixtdx, ĝ(t) = Fx[g(x)].
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The solution of the problem (9) has the following form

Φ̂(t, y) =
1

2ε

ch tβ
2

ch t
2

ĝ(t) (10)

where β = 2y − 1.
In virtue of inverse Fourier transform, after using generalize Parsevals’ formulae,

from (9) and (10) we get that D∗(x, y) has the form as follows

D∗(x, y) = − 1

2ε
g(x) +

1

2ε
√

2π

+∞∫

−∞

g(t)M(x− t)dt, (11)

where

M(ξ) =
1

2π

+∞∫

−∞

ch tβ
2
eiξt

ch t
2

dt. (12)

For the calculation of the last integral we use theory of deductions. We will consider
integral on the following rectangle

Σ = {−R ≤ t ≤ R; 0 ≤ τ ≤ 2πi}.

After consideration integrals

I(1)
c =

+∞∫

−∞

ch tβ
2
eiξt

ch t
2

dt,

I(1)
s =

+∞∫

−∞

sh tβ
2
eiξt

ch t
2

dt,

by view of theory of deductions, we obtain following system

(
1 + e−2πξchπiβ

)
I(1)
c + shπiβ · e−2πξI(1)

s = 4πch
πiβ

2
· e−πξ,

shπiβ · e−2πξI(1)
c +

(
1 + chπiβ · e−2πξ

)
I(1)
c = 4πsh

πiβ

2
· e−πξ.

From the last system we can calculate I
(1)
c , which has a form

I(1)
c =

4π cos πβ
2

chπξ

ch2πξ + cos πβ
.

Then from (12) we get

M(ξ) = 2
√

2π
cos πβ

2
chπξ

ch2πξ + cos πβ
.
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Finally, after substituting the last expression into (11), using expressions D(x, y) =

D∗
(

x√
σ, y

)
, β = 2y − 1, we obtain

D(x, y) = − 1

2ε
g

(
x√
σ

)
+

√
2π sin πy

ε

+∞∫

−∞

g(t)
chπ

(
x√
σ
− t

)

ch2π
(

x√
σ
− t

)
− cos 2πy

dt. (13)

In virtue of method of deductions we get

1√
2π

+∞∫

−∞

M(ξ) = 1.

Using Weierstrass theorem for ρ > 0 we have

lim
ρ→∞

ρ[g(t) ∗M(ρt)] = lim
ρ→∞

1√
2π

+∞∫

−∞

g

(
x√
σ
− t

ρ

)
M(t)dt = g

(
x√
σ

)
. (14)

After consideration the limits of (13) when y → 0, 1, by view of the form (14), in case

of ρ =
1

y
and ρ =

1

1− y
, we get

lim
y→0

D(x, y) = lim
y→1

D(x, y) = 0.

So, D(x, y) satisfies boundary conditions (6).
So, for the flexural-rigidity we have got formulae (13), but in practice sometimes it

is more advantage to use formula (10). Let us consider the following example for the
illustration of the last sentence.

Let q(x) is given by the expression

q(x) = π2
√

2π
ch2πx− 2

ch3πx
. (15)

Then we will have

g(x) =

√
2π

chπx
, ĝ(x) =

1

ch t
2

.

Finally, from the formula (11) we get

D∗(x, y) = −
√

2π

2ε

1

chπx
+

1

2
√

2πε
Re

∞∫

−∞

ch tβ
2
eixt

ch2 t
2

dt. (16)

Let us consider the following integrals

I0
c =

∞∫

−∞

ch tβ
2
eixt

ch2 t
2

dt, I0
s =

∞∫

−∞

sh tβ
2
eixt

ch2 t
2

dt.
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It can be shown that I0
c and I0

s satisfy the following system

I0
c (1−cos πβe−2πx)−iI0

s sin πβe−2πx = 4πβ sin
πβ

2
e−πx+8πx cos

πβ

2
e−πx−8πie−πx cos

πβ

2
,

I0
c (−i sin πβe−2πx) + I0

s (1− cos πβe−2πx)

= 8πe−πx sin
πβ

2
− i

[
4πβ cos

πβ

2
e−πx − 8πxe−πx sin

πβ

2

]
,

from this system we get

Re

∞∫

−∞

chβt
2
eixt

ch2 t
2

dt = ReI0
c =

4π(β sin πβ
2
· chπx + 2xcosπβ

2
shπx)

ch2πx− cos πβ
.

By virtue of (16), after substituting in the last expression the following value β = 2y−1,
we obtain

D∗(x, y) =

√
2π

ε

2x sin πysh2πx + sin2 πy − 2ch2πx(y cos πy + sin2 πy
2

)

chπx(ch2πx + cos 2πy)
.

Finally, for the flexural-rigidity we have formula as follows

D(x, y) =

√
2π

ε

2x√
σ

sin πysh2πx√
σ

+ sin2 πy − 2ch2 πx√
σ
(y cos πy + sin2 πy

2
)

ch πx√
σ
(ch2πx√

σ
+ cos 2πy)

.

From the last formulae it is easy to show that D(x, y) is an even function. Furthermore,

lim
y→0

D(x, y)

y
= lim

y→1

D(x, y)

1− y
=

√
2π

ε

2πx√
σ
sh2πx√

σ
− 2ch2 πx√

σ

(ch2πx√
σ

+ 1)ch πx√
σ

=
2
√

2π

ε

πx√
σ
sh πx√

σ
− ch πx√

σ

ch2πx√
σ

+ 1

lim
x→∞

D(x, y) = lim
x→−∞

D(x, y) = 0, D(0,
1

2
) =

2− π

2π

2
√

2π

ε
.
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