Seminar of I. Vekua Institute
of Applied Mathematics

REPORTS, Vol. 30, 2004

ABOUT SOME PROBLEMS OF MODERN PROGRAMING
Veliashvili N., Jibuti M.

I. Vekua Institute of Applied Mathematics,
[.Javakhishvili Thilisi State University

Received: 29.09.2004; revised: 22.12.2004

Abstract

In this article some problematic aspects of Client/Server technology, Object-oriented Pro-
gramming, Visual Programming, and Event-Driven programming are considered.

Key words and phrases: Client-Server, Object-Oriented, OOP,Visual Programming, Event-
Driven.
AMS subject classification: 68N19; 68N15; 68NO1.

The methods of modern programming are moulding in the rapidly developing net-
work environment. As is well known, Client/Server technology and Object-Oriented
Programming are holding the front line in this field. Also, modern visual program-
ming systems, which are depended on the Event concept, that is program’s execution
flow is controlled by the events. This method is known under the name Event-Driven
Programming.

In this article we attempt to reveal some problematic aspects of these methods.

Client/Server technology arose in the mainframe era [1,2,3], when terminals were
dumb. Therefore, data processing’s every operation was performed by the central com-
puter mainframe. With the advent of personal computers, i.e. when terminals became
intellectual, the opportunity appeared to distribute data processing operations among
central computer (Server) and intellectual terminals (Workstations). The general idea
of distributed processing is the following:

a. Centralcomputer - Server contains Centralized Repository of Data.

b. Each Workstation - Client usually works with this Repository: it receives

appropriate data from Server and processes them locally.

c. If necessary the result of data processing is sent back to Server.

Thus, Data direct processing is performed by a workstation, while server in such
schema fulfils only functions of dispatching. Indeed, at first years of coming-to-be
of personal computers networks, there was developed the File-Server Schema, which
represents the maximalistic shape of Client/Server architecture. There was developed
appropriate Operation Systems and NOVELL NATWARE was the best among them.
About high level of Reliability and Performance of this product specialists know very
well. Unfortunately, the File-Server schema experience has showed serious lacks of this
approach. The main lack of this schema is just the fact, that Server does not execute
any other processes except dispatching processes. On the other hand, any modern pow-
erful database’s functioning requires simultaneous execution of dozen nondispatching



50 Veliashvili N.,; Jibuti M.

processes. This means that powerful databases can’t carry out full-scale functioning
in the File-Server environment. In other words, the File-Server’s capabilities do not
meet the powerful databases’ requirements. However, there were attempts to realize
the powerful databases in the File-Server environment (e.g. ORACLE in the NOVELL
NATWARE). Unfortunately, these attempts had no success.

Consequently, it is possible to make up the conclusion: for successful realization of
Client/Server architecture a Server must be a mainframe type. It’s obvious that an
Operation System for such Server must be a corresponding type - it will be able to exe-
cute several programs and subprograms simultaneously, i.e. it must be a multiprogram
and a multithread system.

Network Traffic problem is a well known one - a Network Admittance is signifi-
cantly behind the computers productivity. Therefore, it is bottleneck of Client/Server
architecture. Usually, this problem arises when network performs intensive information
interchange and /or interchange covers a large amount of information. So, in some cases
Network Traffic can reduce an application’s serviceableness to zero, i.e. the main goal
- source task may turn out practically unsettled.

In such situations, the recommendations are given to application developers, some-
thing like this:

a) If amount of receivable information is not large, then a workstation can receive
and process it locally.

b) Otherwise, when amount of receivable information is large, information process-
ing must be entrusted to a server using, so-called, stored procedures.

During the realization of such recommendations, often, information processing may
be completely entrusted to a server, while for workstation is remained only interaction
with users. Of course, in such allocation the main idea of Client/Server schema is dis-
rupted, i.e. the idea about distributed processing. On its part, distributed processing
is one of the ways for traffic problem solving. In this case, a server turns into a logical
mainframe, while Client/Server schema becomes a pseudo-Client/Server schema. It
seems that today’s Client/Server applications are mostly pseudo-Client/Server prod-
ucts.

Certainly, this situation is not casual. The point is that at a client application’s
designing stage only rough estimation is possible for receivable information’s volumes
and information interchange’s intensities, what, of course, is not sufficient for exact
decisions. In addition, any estimation of receivable information’s variety is simply
not on. Therefore, to avoid any surprises developers finally are inclined to entrust
information processing to a server.

So, we can conclude that generally the cause of mentioned problem is the static
estimation of information flows at a designing stage, whereas, in reality, for the problem
solving is necessary dynamic estimation - during an application execution. This implies
that estimation facilities must be the part of an application itself.

Generally, mentioned problem’s solving, undoubtedly, is not confined to information
flows assessment. Estimation facilities must also cover receivable information’s relations
to other characteristics of network, such as:

- Parameters of network;

- Servers and Workstations productivity (performance);



About Some Problems of Modern Programming

51

- Number of Servers and Workstations in a network;

- There activities;

- And other important relations.

Thus, any similar approach’s promotion requires:

a) Special assessment methods development for critical characteristics of network;

b) Investigation of developed methods efficacy.

Unfortunately, today similar methods are not matured; they most likely are topics
of research.

The modern visual programming systems are built on the Object-Oriented Pro-
gramming ideas [4]. We think that such systems are ideal to slip quickly from a plan
to its realization, i.e. for quick construction of first (draft) version of an application.
But for serious and reliable applications they can’t be considered as good instruments.
The point is that:

- Visual programming systems contain numerous built-in objects.

- Each object has three types of characteristics: Properties, Methods and Events,
which can occur with this object.

- The total number of object characteristics varies from 40 to 100 (including inher-
ited characteristics).

- In a real, serious application, as a rule, figures dozen objects at least.

So, total sum of these characteristics in an application reaches to enough large
number. Consequently, to think over the relations and the interdependency among
these characteristics, all the more, to control them is practically impossible. Therefore,
a developer, usually, selects from this huge set of characteristics only several and works
with them. Correspondingly, the rest characteristics stay beyond the attention of a
developer.

Hence, it turns out that the developer in reality controls (manage) relatively small
part of the whole, whereas the greater part stays beyond his attention. An application
built in such a way actually represents, so called, "black box”. As is well known,
systems built on the "black box” principle are not reliable (they can’t be reliable).

Also, it is important that experienced developer upon analyzing some situation
collects its characteristics and groups them together. This permits him to control
characteristics behaviour more or less easily, hence to control situation itself. Unfor-
tunately, modern programming tools do not permit such practice, because different
characteristics are scattered among different objects. Consequently, this also makes
difficult to control situation behaviour and, surely, this factor affects negatively on
application reliability:.

It seems that situation concept [5, 6] is one of the items of developer’s thinking,
but modern programming tools do not contain features related with situation.

So, it could say that modern complex applications designing and constructing log-
ically requires new concepts, such as a situation, and related features in the program-
ming tools.

We think that together with Event-Driven Programming it would be effective to
base applications developing on the Situation-Driven Programming.

It would be an attempt to raise programming logic to a higher level - a real attempt
to consider program’s logic using more higher level, logically capacious concepts and



52 Veliashvili N.,; Jibuti M.

features.
Unfortunately, modern programming tools do not contain such features.

REFERENCES

1. W.Page, D.Austin and others. Using Oracle 8/8i. Que Corporation, 1999.

2. V.Gofman, A.Xomenenko. Delphi 6. BKHV- Peterburg, 2002.

3. P.Litwin, K.Getz, M.Gunderloy. Access 2002. SYBEXInc., 2002.

4. B.Liskov, J.Gateg. Ispol’zovanie abstrakzii i spezifikazii pri razrabotke programm. Izdatel’stvo
”Mir”, Moskva, 1989.

5. M.Bertgeimer. Produktivnye myshlenie. Moskva, PROGRESS, 1987

6. J.Barwise. The Situation in Logic. Lecture Notes, Number 17, CSLI, 1989.



