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Abstract

The steady state response of a micropolar elastic solid with an overlying infinite non-viscous

fluid subjected at the plane interface to a moving point load has been studied. The displacement

and stress components for subsonic, supersonic and transonic velocities are obtained by the use

of Fourier transform technique. Numerical inversion technique has been applied to obtain the

results in the physical domain and the numerical results are illustrated graphically for a particular

model.
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Introduction

The classical theory of elasticity does not explain certain discrepancies that occur
in the case of problems involving elastic vibrations of high frequency and short wave
length, that is, vibrations due to the generation of ultrasonic waves. The reason lies in
the microstructure of the material which exerts a special influence at high frequencies
and short wave lengths.

An attempt was made to eliminate these discrepancies by suggesting that the trans-
mission of interaction between two particles of a body through an elementary area lying
within the material was affected not solely by the action of a force vector but also by
a moment (couple) vector. This led to the existence of couple stress in elasticity.
Polycrystalline materials, materials with fibrous or coarse grain structure come in this
category. The analysis of such materials requires incorporating the theories of oriented
media. For this reason, micropolar theories were developed by Eringen (1966a,b) for
elastic solids and fluids and are now universally accepted .

The dynamical response to moving loads is of considerable interest in a variety
of technological and geophysical circumstances and several recent investigations are
concerned with this problem. For instance, it is of great interest in solid dynamics
where ground motions and stresses can be produced by blast waves (surface pressure
waves due to explosions), or by supersonic aircraft. This type of investigation occur
in many branches of engineering, for e.g in bridges and railways, beams subjected to
pressure waves and piping systems subjected to two phase flow. Other applications are
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encountered within the context of contact mechanics like, the problem of high velocity
rocket sleds sliding over steel guide rails. This type of investigation is found also in the
foundation problems of soil mechanics. Payton (1964), Eason (1965), Gakenheimer and
Miklowitz (1969), Kennedy and Hermann (1973), Halpern and Christiano (1986), Nath
and Sengupta (1999), Katz (2001), and Verruijt and Cordova (2001) have investigated
the problems of moving load in classical theory of elasticity. Kumar et al. (1992, 2000,
2002, 2003) studied the steady state response to moving loads in micropolar theory of
elasticity.

In the present paper we study the moving load problem at fluid/micropolar elastic
solid interface. The solution is obtained in the transformed domain by using Fourier
transform and the numerical inversion technique is applied to get the results in the
physical domain.

Formulation and solution of the problem

We consider a normal point load moving along the interface of non-viscous fluid
(Medium II)/micropolar elastic solid (Medium I). We consider a rectangular coordinate
system (x, y, z) having origin on the surface z = 0 and z - axis pointing vertically into
the medium as shown in figure 1. Let us consider a pressure pulse P (x+ Ut) which is
moving with a constant velocity in the negative x direction. After the load has been
moving for some time and the transient effects have died away, the displacements will
appear stationary in a coordinate system moving with the load.

Figure 1: Moving load on interface.
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Following Eringen (1966a), the field equations and constitutive relations in micropolar
elastic solid without body forces and body couples can be written as,

(λ+ 2µ+K)grad diν�u− (µ+K)rot rot �u+Krot�φ = ρ
∂2�u

∂t2
, (1)

(α+ β + γ)grad diν�φ− γrot rot�φ+Krot�u− 2K�φ = ρj
∂2�φ

∂t2
, (2)

tkl = λur,rδkl + µ(uk,l + ul,k) +K(ul,k − εklrφr), (3)

mkl = αφr,rδkl + βφk,l + γφl,k, k = l = 1, 2, 3, (4)

where
λ, µ,K, α, β, γ are material constants, ρ is the density of micropolar elastic solid ,

j is the microinertia, �u is the displacement vector and �φ is the microrotation vector,
tkl and mkl are respectively force stress tensor and couple stress tensor in micropolar
elastic medium and ∇ is the gradient operator.

The equation which governs the motion of the fluid is given by Ewing, Jardetzky
and Press (1957) as

λf∇(∇.�V ) = ρf
∂2�V

∂t2
, (5)

where λf is Lame’s constant and ρf is density of fluid.
For two dimensional problem, all quantities depend only on space coordinates x, z

and time t and we take the displacement vector and microrotation vector in medium I
and displacement vector in medium II respectively as,

�u = (u1, 0, u3), �φ = (0, φ2, 0), �V (V1, 0, V3). (6)

The displacement components in both the medium are related by potential functions
q, ψ and φf as

u1 =
∂q

∂x
+
∂ψ

∂z
, u3 =

∂q

∂z
− ∂ψ

∂x
, (7)

where ψ is the yth component of displacement vector (−�u) and

V1 =
∂φf

∂x
, V3 =

∂φf

∂z
, (8)

Using (6), (7) and (8) in equations (1), (2) and (5) we obtain,

[
∇2 − ρ

(λ+ 2µ+K)

∂2

∂t2

]
q = 0 (9)

[
∇2 − ρ

(µ+K)

∂2

∂t2

]
ψ − K

(µ+K)
φ2 = 0 (10)

[
∇2 − 2K

γ
− ρj

γ

∂2

∂t2

]
φ2 +

K

γ
∇2ψ = 0 (11)

∇2φf =
ρf

2

λf
2

∂2φf

∂t2
. (12)
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Following Fung (1968), a Galilean transformation

x∗ = x+ Ut, z∗ = z, t∗ = t. (13)

is introduced. The boundary conditions would be independent of t∗ and assuming the
dimensionless variables defined by

x′ =
x∗

h
, z′ =

z∗

h
, φ′

2 =
j

h2
φ2, q′ =

q

h2
, ψ′ =

ψ

h2
, tij =

tij
λ
, m′

ij =
mij

λh
,

φ′
f =

φf

h2
, p′ =

p

λ
. (14)

where h is characteristic length and p is fluid pressure given by p = −ρf
∂2φf

∂t2
, in

equations (9)-(12) and applying the Fourier transform defined by

f̃(ξ, z) =

∞∫
−∞

f(x, z)eiξxdx (15)

we get (after suppressing the primes),[
d2

dz2
− ξ2

(
1 − U2

c21

)]
q̃ = 0, (16)

[
d2

dz2
− ξ2

(
1 − U2

c23

)]
ψ̃ − Kh2

j(µ+K)
φ̃2 = 0, (17)

[
d2

dz2
− 2K

γ
− ξ2

(
1 − U2

c24

)]
φ̃2 +

Kj

γ

(
d2

dz2
− ξ2

)
ψ̃ = 0, (18)

[
d2

dz2
− ξ2

(
1 − U2

c25

)]
φ̃f = 0, (19)

where

c21 =
λ+ 2µ+K

ρ
, c23 =

µ+K

ρ
, c24 =

γ

ρj
c25 =

λf

ρf

. (20)

Eliminating φ̃2 from (17) and (18) we obtain[
d4

dz4
+ A∗ d

2

dz2
+B∗

]
ψ̃ = 0, (21)

where

A∗ = −2K

γ
− ξ2

(
2 − U2

c23
+
U2

c24

)
+

K2h2

γ(µ+K)
,

B∗ =
2Kξ2

γ

(
1 − U2

c23

)
+ ξ4

(
1 − U2

c23

) (
1 − U2

c24

)
−−ξ2 K2h2

γ(µ+K)
. (22)

Introducing mach numbers Mn(n = 1, 3, 4, 5) and the parameters αn and α′
n as

Mn =
U

cn
, n = 1, 3, 4, 5
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α2
n = 1 − U2

c2n
= 1 −M2

n, if Mn < 1

α
′2
n =

U2

c2n
− 1 = M2

n − 1, if Mn > 1. (23)

Boundary conditions

For a concentrated point force, we take P (x+ Ut) = Fδ(x∗), where δ(x∗) is Dirac-
delta function and F is the magnitude of force applied, therefore in moving coordinates
the boundary conditions at the interface z = 0 are ,

(i) t33 = −p− Fδ(x∗),
(ii) m32 = 0,
(iii) t31 = 0,
(iv) Normal component of velocity ofsolid = Normal velocity of fluid,

i.e
∂2φf

∂z∂t
=
∂u3

∂t
. (24)

Case (i):Subsonic. Mi < 1(i = 1, 3, 4, 5).
In this caseA∗ and B∗ in equation (22) take the form

A∗ = −2K

γ
− ξ2(a2

3 + a2
4) +

K2h2

γ(µ+K)
,

B∗ =
2Kξ2

γ
α2

3 + ξ4α2
3α

2
4 − ξ2 K2h2

γ(µ+K)
. (25)

The solutions of equations (16) and (21) with A∗ and B∗ defined by (25), satisfying
the radiation conditions that q̃, φ̃2, ψ̃ → 0 as z → ∞ and the solution of equation (19)
satisfying the conditions that φ̃f → 0 as z → −∞ are,

q̃ = A1 exp(−ξ1z), (26)

ψ̃ = A3 exp(−ξ3z) + A4 exp(−ξ4z), (27)

φ̃2 = a3A3 exp(−ξ3z) + a4A4 exp(−ξ4z), (28)

φ̃f = A5 exp(ξ5z), (29)

where ξ2
3,4 the roots of the equation (21) given by

ξ2
3,4 =

[−A∗ ±√
A∗2 − 4B

∗
]

2
, ξ1,5 = ξα1,5, and a3,4 =

j(µ+K)

Kh2
(ξ2α2

3 − ξ2
3,4). (30)

Using equations (3), (4), (6)-(7) and (13)-(14) in the boundary conditions (24)
(after suppressing the primes), applying the transform defined by (15) and using (26)-
(29) in the resulting expressions, we obtain the transformed expressions for normal
displacement, normal force stress, tangential couple stress and fluid pressure at fluid/
micropolar elastic solid interface as,
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ũ3 =
F

∆
|ξ1∆′

1e
−ξ1z + iξ∆′

2e
−ξ3z − iξ∆′

3e
−ξ4z|, (31)

t̃33 = −F
∆
|f1∆

′
1e

−ξ1z − f2∆
′
2e

−ξ3z + f3∆
′
3e

−ξ4z|, (32)

m̃32 = − Fγ

jλ∆
|a3ξ3∆

′
2e

−ξ3z − a4ξ4∆
′
3e

−ξ4z|, (33)

p̃ = −F
∆
Eξ2∆′

4e
ξ5z (34)

where

∆ =
∆′

1

ξ5
(f1ξ5 − Eξ2ξ1) − ∆′

2

a4ξ4
(f2a4ξ4 − f3a3ξ3) − iEξ3∆′

3

a3ξ3ξ5
(a4ξ4 − a3ξ3),

∆′
1 = ξ5(a4ξ4r2 − a3ξ3r3), ∆′

2 = ξ5r1a4ξ4, ∆′
3 = ξ5r1a3ξ3,

∆′
4 = iξr1(a4ξ4 − a3ξ3) + ξ1(r2a4ξ4 − r3a3ξ3), r1 = (2µ+K)iξξ1,

r2,3 = µξ2 + (µ+K)ξ2
3,4 −

Kh2

j
a3,4, f1 =

(
λ+ 2µ+K

λ

)
ξ2
1 − ξ2,

f2,3 = −iξξ3,4

(
2µ+K

λ

)
, E =

ρfc
2
5

λ
M2

5 . (35)

Particular case. Neglecting micropolarity effect i.e (α = β = γ = K = j = 0) in
equations (31)-(34), the expressions for normal displacement, normal force stress and
fluid pressure at fluid/elastic solid interface are given by,

ũ3 =
F

∆0

|ξ1∆′
10e

−ξ1z − iξ∆′
20e

−ξ′3z|, (36)

t̃33 = − F

∆0

|f ′
1∆

′
10e

−ξ1z − f ′
2∆

′
20e

−ξ′3z|, (37)

p̃ = −F
∆
Eξ2∆′

30e
ξ5z, (38)

where

∆0 = ξ5(f
′
1r

′
2 − f ′

2r
′
1) − Eξ2(iξr′1 + ξ1r

′
2), ∆′

10 = r′2ξ5, ∆′
20 = r′1ξ5,

∆′
30 = −(iξr′1 + ξ1r

′
2), r′1 = 2µiξξ1, r′2 = µ(ξ2 + ξ

′2
3 ),

f ′
1 =

(
λ+ 2µ

λ

)
ξ2
1 − ξ2, f ′

2 = −iξξ1 2µ

λ
, ξ

′2
3 = α02

3 ξ
2, α02

3 = 1 −M02

3 ,

and α1,3 in the expressions of A∗, and B∗ takes the form

α0
1,3 =

√
1 −M02

1,3, M1,3
0 =

U

c01,3

, c0
2

1 =
λ+ 2µ

ρ
, c0

2

3 =
µ

ρ
. (39)
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Case (ii): Supersonic. Mi > 1 (i = 1, 3, 4, 5).
In this case, the solutions of equations (16), (19) and (21) satisfying the regularity

conditions are given by
q̃ = A1 exp(−iξ1z), (40)

ψ̃ = A3 exp(−iξ3z) + A4 exp(−iξ4z), (41)

φ̃2 = a3A3 exp(−iξ3z) + a4A4 exp(−iξ4z), (42)

φ̃f = A5 exp(iξ5z), (43)

With the help of (40)-(43) we obtain the corresponding expressions as given by
(31)-(34) with A∗, B∗ and a3,4 taking the form,

A∗ = −2K

γ
+ ξ2(α

′2
4 + α

′2
3 ) +

K2h2

γ(µ+K)
,

B∗ = −2Kξ2

γ
α2

3 + ξ4α
′2
3 α

′2
4 − ξ2 K2h2

γ(µ+K)
,

a3,4 = −j(µ+K)

Kh2
(ξ2α

′2
3 + ξ

′2
3,4) and ξ′1,5 = ξα′

1,5 (44)

Particular case. If we neglect micropolarity effect, then the expressions (36)-(38)
are obtained in case of fluid/elastic solid interface with A∗, B∗ and a3,4 defined by
equation (44), with a02

1 and a02

3 replaced by a∗
2

1 and a∗
2

3 respectively, where

α∗
1 =

√
M02

1 − 1, α∗
3 =

√
M02

3 − 1. (45)

Case (iii): Transonic. M1,3 < 1, M4,5 > 1.
For transonic load velocity the solutions of equations (16), (21) and (19) satisfying

the radiation conditions are given by (26), (43) and

ψ̃ = A3 exp(−ξ3z) + A4 exp(−iξ4z), (46)

φ̃2 = a3A3 exp(−ξ3z) + a4A4 exp(−iξ4z), (47)

respectively
The expressions for normal displacement, normal force stress and tangential couple

stress are given by (31)-(34) with the following changed values of A∗, B∗ and a3,4

A∗ = −2K

γ
− ξ2(α2

3 − α
′2
4 ) +

K2h2

γ(µ+K)
,

B∗ =
2Kξ2

γ
α2

3 − ξ4α2
3α

′2
4 − ξ2 k2h2

γ(µ+K)
,

a3 =
j(µ+K)

Kh2
(ξ2α2

3 − ξ
′2
3,4), a4 = −j(µ+K)

Kh2
(ξ2α

′2
3 + ξ

′2
4 ). (48)

where ξ1 and ξ′5 are defined by equations (30) and (44) respectively.
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Particular case. Neglecting micropolarity effect, the transformed expressions for
normal displacement and normal force stress are again given by equations (36)-(38)
with α2

1 and α2
3 replaced by α02

1 and α02

3 defined by (39).

Inversion of the transform

To obtain the solution of the problem in the physical domain, we must invert the
transform in (31)-(34) and (36)-(38). These expressions are functions of z and the
parameter of Fourier transform ξ, hence are of the form f̃(ξ, z). To get the function
f(x, z) in the physical domain we invert the Fourier transform using,

f(x, z) =
1

2π

∞∫
−∞

f̃(ξ, z) e−iξxdξ

=
1

2π

∞∫
−∞

[Cos(ξx)fe − iSin(ξx)f0]dξ. (49)

where fe and f0 are respectively even and odd parts of the function f̃(ξ, z). The
method for evaluating this integral is described by Press et al.(1986) which involves
the use of Rhomberg’s integration with adaptive step size. This also uses the results
from successive refinements of the extended trapezoidal rule followed by extrapolation
of the results to the limit when the step size tends to zero.

Numerical results and disscussion

For micropolar elastic solid (Medium I) we take the values of parameters for mag-
nesium crystal like material given by Eringen (1984) as,

λ = 9.4 × 1011 dyne/cm2, µ = 4.0 × 1011 dyne/cm2, K = 1.0 × 101 dyne/cm2,
γ = 0.779 × 10−4 dyne, j = 0.2 × 10−15 cm2, ρ = 1.74 g/cm3,

For medium II we water as non-viscous fluid, for which the values of density and
Lames constant are given by Ewing et al.(1957),

ρf = 1.0 g/cm3, λf = 0.214 × 1011 dyne/cm2.

The variations of normal displacement, normal force stress, tangential couple stress
and fluid pressure with distance x at the plane z = 1.0 and h2 = 1.0 × 10−15cm2 , for

(i) Micropolar elastic solid (MES) are shown by

(a) solid line(——) for subsonic load velocity.

(b) solid line with centered symbols (x—x—x) for supersonic load velocity.

(c) solid line with centered symbols (o—o—o) for transonic load velocity.

(ii) Elastic solid (ES) are shown by

(a) dashed line(——) for subsonic load velocity.

(b) dashed line with centered symbols (x—x—x) for supersonic load velocity.
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(c) dashed line with centered symbols (o—o—o) for transonic load velocity.
These variations are shown in Fig (2)-(5).

Discussions for various cases

The values of normal displacement for ES lie in a short range as compared to
the values for MES. If we compare the variations among various load velocities, then
the variation of normal displacement is least oscillatory for subsonic load velocity and
most oscillatory for transonic load velocity for MES. In case of ES, the variations
are of comparable magnitude for different load velocities. Very close to the point of
application of source, the values of normal displacement for both ES and MES are
quite close to each other irrespective of the magnitude of moving load velocity. These
variations of normal displacement are shown in Figure 2.

The variations of normal force stress are similar to the variations of normal dis-
placement with difference in magnitude. The discussions for the variations of normal
force stress and different load velocities are similar in nature to the discussions given
in case of normal displacement. The only point of concern being that the difference in
values of normal force stress for subsonic and transonic load velocities (for ES) is very
less whereas this difference is quite significant in case of normal displacement. The
variations of normal force stress for different load velocities and both ES and MES are
shown in Figure 3.

It is observed from Figure 4 that the values of tangential couple stress for subsonic
load velocity lie in a very short range. However, near the point of application of source,

the value of tangential couple stress is maximum for supersonic load velocity and
minimum for transonic load velocity. Initially, the values of tangential couple stress
for supersonic and transonic load decreases with increase in horizontal distance x.
However, this decrease is sharper for supersonic load velocity.

The variation of fluid pressure for different load velocities is similar in nature for
both ES and MES with difference in magnitude. It is however observed from Figure 5
that this difference in magnitude is least for supersonic load velocity but the difference
is quite significant in nature for both subsonic and transonic load velocities. Also for a
particular load velocity, the value of fluid pressure for ES is less in comparison to the
value for MES. The value of fluid pressure for ES and in case of transonic load velocity
has been magnified by 10.

Conclusion

The variations of all the quantities are quite significant for different load velocities.
Also due to the presence of micropolarity effect the variations of all the quantities
are more for MES in comparison to the variations for ES. The variations of normal
displacement, normal force stress and tangential couple stress are more oscillatory for
transonic load velocity as compared to the variations for subsonic and supersonic load
velocities. Also it is observed that these variations are least oscillatory for subsonic load
velocity. The values of normal displacement, normal force stress and fluid pressure for
ES are less in comparison to the values for MES. In case of fluid pressure, the variation
is more oscillatory for subsonic load velocity.
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