Seminar of I. Vekua Institute
 of Applied Mathematics
 REPORTS, Vol. 29, 2003

ON THE ANALITIC REPRESANTATION OF ONE CLASS OF GEOMETRIC FIGURES, SURFACES AND LINES

Tavkhelidze I.
I. Vekua Institute of Applied Mathematics

Reported: 5.02.2003; received: 20.11.2003 ; revised: 20.12.2003

Abstract

Aim of this article is analitical reprezantation of one class of geometrical figurs, surfaces and lines. This class obteined bay identifying of the opposite ends of the prisms or cilinders under spetial conditions. This class of surfaces appear, when we study the problems of spreading of smoke-rings, also this class of lines describe the complicated orbit of some celestial objects. Very interesting this class figures and shells for sduty of some problems of elasticity theory, but in this article we give only analitic represantation of this figure or surfaces.

Key words and phrases: Analitic represantation, torus, torus-shaped body.
AMS subject classification: 51E21, 51N05
Let $\mathbb{P} R_{m} \equiv A_{1} A_{2} \cdots A_{m} A_{1}^{\prime} A_{2}^{\prime} \cdots A_{m}^{\prime}$ be an orthogonal prism, whose end-walls $A_{1} \cdots A_{m}$ and $A_{1}^{\prime} \cdots A_{m}^{\prime}$ are $\mathbb{P}_{m^{-}}$regular m - symmetric plane figurs (in particulary polygons) and m is a number of its angels (verteces). In generally $A_{j} A_{j+1}$ - edge of this figures are not straight line (for example this figure may be epicycloid or hypocycloid). $O O^{\prime}$ is axis of symmetry of this prism.

Definition. Generelized Möbius Listing's body GML L_{n}^{m} is obtained by identifying of the opposite end-walls of the prism $\mathbb{P R}_{m}$ in such a way that:
A) for any $n \in Z$ and $i=\overline{1, m}$, each vertex A_{i} coincides with $A_{i+n}^{\prime} \equiv A_{\bmod _{m}(i+n)}^{\prime}$, and each edge $A_{i} A_{i+1}$ coincides with the edge

$$
A_{i+n}^{\prime} A_{i+n+1}^{\prime} \equiv A_{\text {mod }_{m}(i+n)}^{\prime} A_{\bmod _{m}(i+n+1)}^{\prime}
$$

correspondingly. ${ }^{1}$
B) $n \in Z$ is a number of rotations of the end-walls of the prism with respect to the axis $O O^{\prime}$ before the identification.
if $n>0$ rotations are counter-clockwise, and if $n<0$ rotations are clockwise.
Remark 1. Each lateral face of the prism $\mathbb{P R}_{m}$ after transformation pass into the some surfase, wich is lateral face of Generelized Möbius Listing's body $G M L_{n}^{m}$. Also each edge $A_{j} A_{j}^{\prime}$ of prism for every $j=1, m-1$ after tramsformation pass into the some curve, wich is edge of the $G M L_{n}^{m}$, but every edge $A_{j} A_{j}+1$ after transformation is vanish.

[^0]In particular, if $\mathrm{m}=2$, and $\mathbb{P}_{2} \equiv A_{1} A_{2} A_{1}^{\prime} A_{2}^{\prime}$ is a rectangle, $A_{1} A_{2}$ is a segment of the straight line, and $G M L_{1}^{2}$ becomes a classical Möbius band (see for example [1-3]); also he have one edge and one surface, (classical one sided surfase), $G M L_{0}^{2}$ is a cylinder, cone, frustzum of a cone or a ring. But may be $A_{1} A_{2}$ is a epicycloid were $m=2$ and in this case $G M L_{0}^{2}$ is torus-shaped body wiht radial crossection - epicycloid.

Definition. Some body bounded by k-colored surface - if it is possible to paint the exterior (or interior) lateral faces of this surface in k different colours without taking away of the brush. It is prohibited to cross the edges of this surface.
I. In this part of the article we give parametric represantation of the $G M L_{n}^{m}$ under the following restrictions:
i) middle line $O O^{\prime}$ transforms in the some plane closed courve;
ii) the end rotation is semi-regular.

Let

$$
\left\{\begin{array}{l}
x=p(\tau, \psi) \tag{1}\\
z=q(\tau, \psi)
\end{array}\right.
$$

parametric represantation of the regular m - symmetric figures \mathbb{P}_{m}, where $(\tau, \psi) \in Q \subset$ $\subset \mathbb{R}^{2}$, such that $p(0,0) \equiv q(0,0)=0$, the point $(0,0)$ be a center of symmetry of the \mathbb{P}_{m}.

Let

$$
\mathbb{L}_{\rho}=\left\{\begin{array}{l}
x=f_{1}(\rho, \theta) \tag{2}\\
y=f_{2}(\rho, \theta)
\end{array}\right.
$$

be some one-parametric familly of closed courves, morever:
a) for every fixed $\rho \in\left[0, \rho^{*}\right], \quad L_{\rho}$ is a closed courve and $f_{i}(\rho, \theta+2 \pi)=f_{i}(\rho, \theta), \quad i=$ $=\overline{1,2}$
b) for any $\rho_{1}, \rho_{2} \in\left[0, \rho^{*}\right], \rho_{1} \neq \rho_{2}$, courves $\mathbb{L}_{\rho_{1}}$ and $\mathbb{L}_{\rho_{2}}$ have not common points. Let

$$
\begin{equation*}
g(\theta):[0,2 \pi] \rightarrow[0,2 \pi] \tag{3}
\end{equation*}
$$

be arbitrary functions and for every
$\Phi \in[0,2 \pi]$ exist $\theta \in[0,2 \pi]$ such that $\Phi=g(\theta)$.
Let

$$
\Omega=\left\{(x, z, \theta) \in \mathbb{R}^{3} ; \quad(x, z) \in \mathbb{P}_{m}, \quad 0 \leq \theta<2 \pi R\right\}
$$

and

$$
\Omega^{*}=\left\{(\tau, \psi, \theta) \in \mathbb{R}^{3} ; \quad(\tau, \psi) \in Q, 0 \leq \theta<2 \pi R\right\}
$$

Theorem 1. The transformation $F: \Omega^{*} \rightarrow G M L_{n}^{m}$ with

$$
F=\left\{\begin{align*}
x(\tau, \psi, \theta) & =f_{1}\left(\left(R+\rho(\tau, \psi) \cos \frac{n g(\theta)}{m R}-q(\tau, \psi) \sin \frac{n g(\theta)}{m R}\right), \frac{\theta}{R}\right. \tag{4}\\
\varphi(\tau, \psi, \theta) & =f_{2}\left(\left(R+\rho(\tau, \psi) \cos \frac{n g(\theta)}{m R}-q(\tau, \psi) \sin \frac{n g(\theta)}{m R}\right), \frac{\theta}{R}\right.
\end{align*}\right),
$$

where $(\tau, \psi, \theta) \in \Omega^{*}$, is parametric represantation of $G M L_{n}^{m} . R$ is a arbitrary positive number, but $R>\rho\left(0, A_{i}\right)$ - is a distance between center of symmetry of the polygon \mathbb{P}_{m}
and its vertex A_{i} - if \mathbb{P}_{m} - is convex domain. If figure \mathbb{P}_{m} is non-convex, then R is an arbitrary positive number, which is greater then distance bitween center of symmetry of figure and maximaly distant points of its boundary.

Remark 2. If (1) is a parametric represantation of an arbitrary plane figure, then in formula (4) $m \equiv 1$, for any $n \in Z$.

In this case if prism $\mathbb{P R}_{m}$ have k different lateral face, then $G M L_{n}^{1}$ have k - colored external (or internal) surface. Also if prism $\mathbb{P R}_{m}$ have l different lateral edges, then $G M L_{n}^{1}$ have l different edges;

If figure \mathbb{P}_{m} have a smooth boundary, then $l=0$.
Remark 3. If \mathbb{P}_{∞} is a disk, then in formula (4) $m \equiv 1$ and n is an arbitrary real number.In this case $G M L_{n}^{\infty}$ have a one colored external (or internal) surface and have not edge.

Remark 4. If $\left(\tau_{0}, \psi_{0}\right)$ is an arbitrary fixed point of $\partial \mathbb{P}_{\infty}$ (circle), then transformation

$$
l_{n}(\theta)=\left(x\left(\tau_{0}, \psi_{0}, \theta\right), y\left(\tau_{0}, \psi_{0}, \theta\right), z\left(\tau_{0}, \psi_{0}, \theta\right)\right)
$$

when $-\infty<\theta<\infty$, is a courve lying on the $G M L_{n}^{\infty}$ (in particulary torus).
a) If $n \in Z$, the $l_{n}(\theta)=l_{n}(\theta+2 \pi)$ is a closed courve, and n is a number of coils around of little parts of the $G M L_{n}^{\infty}$.
b) If $n=\frac{1}{k}, k \in Z$, then $l_{n}(\theta)=l_{n}(\theta+2 \pi k)$ is a closed courve, but after k rotations around of big parts of the $G M L_{n}^{\infty}$ we have only one coil around of little part of the $G M L_{n}^{\infty}$.
c) If $n=\frac{p}{k}, p, k \in Z$, then $l_{n}(\theta)=l_{n}(\theta+2 \pi k)$ is a closed courve, and after k rotations around of big parts of the $G M L_{n}^{\infty}$ we have p coils around of little part of the $G M L_{n}^{\infty}$. d) If $n \in R \backslash Q$ is irrational number, then $l_{n}(\theta)$ is nonclosed courve. This courve makes infinite coils after infinite circuits arournd the $G M L_{n}^{\infty}$, but this courve is not self-crossing.

Remark 5. If k is the greatest common divisor of m and $\bmod _{m}(n)$ then $G M L_{n}^{m}$ have k - colored surface. Also $G M L_{n}^{m}$ have k different edges (closed curves). In particular if $k=1$, then Generelized Möbius Listing's body have a one colored surface.

Remark 6. It is different one or two colored surface and one or two sided surface. But when $G M L_{1}^{2}$ a classical Möbius band is one sided and one colored surface, also this surface have only one edge. In this case $\mathbb{P R}_{2} \equiv A_{1} A_{2} A_{1}^{\prime} A_{2}^{\prime}$ is a rectangle, $A_{1} A_{2}$ is a segment of the straight line.

Examples: A) If, in particular, middle line $O O^{\prime}$ transforms in the circle

$$
x=f_{1}(\rho, \theta)=\rho \cos (\theta), \quad y=f_{2}(\rho, \theta)=\rho \sin (\theta)
$$

and the end-wall rotation is evenly along the middle line

$$
g(\theta)=\theta
$$

then the transformation (4) have following form

$$
F=\left\{\begin{align*}
x(\tau, \psi, \theta) & =\left(R+p(\tau, \psi) \cos \frac{n \theta}{m R}-q(\tau, \psi) \sin \frac{n \theta}{m R}\right) \cos \frac{\theta}{R} \tag{5}\\
y(\tau, \psi, \theta) & =\left(R+p(\tau, \psi) \cos \frac{n \theta}{m R}-q(\tau, \psi) \sin \frac{n \theta}{m R}\right) \sin \frac{\theta}{R} \\
z(\tau, \psi, \theta) & =p(\tau, \psi) \sin \frac{n \theta}{m R}+q(\tau, \psi) \cos \frac{n \theta}{m R}
\end{align*}\right.
$$

where $(\tau, \psi, \theta) \in \Omega^{*}$ and this is parametric represantation of $G M L_{n}^{m}$.
If $m=2$, and

$$
\begin{array}{ll}
x=p(\tau, \psi)=\tau \cos \psi_{0} & \tau \in\left(-\tau^{*}, \tau^{*}\right) \\
z=q(\tau, \psi)=\tau \sin \psi_{0} & \psi_{0}=\text { const }
\end{array}
$$

we have following cases:

1) if $\psi_{0}=0$ or $\psi_{0}=\pi$, then $m=2, n=0, q(\tau, \psi) \equiv 0, p(\tau, \psi) \equiv \tau,-\tau^{*}<\tau<\tau^{*}$, then $G M L_{0}^{2}$ is not tree dimensional body, but is a circular ring, two-sided and twocolored surfece, with two edges;
2) if $\psi_{0}=\frac{\pi}{2}$ or $\frac{3 \pi}{2}$ then $m=2, n=0, p(\tau, \psi) \equiv 0, q(\tau, \psi) \equiv \tau,-\tau^{*}<\tau<\tau^{*}$, then $G M L_{0}^{2}$ is a cylinder-surface, also two-sided and two-colored surfece, with two edges ;
3) if $\psi_{0} \neq 0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}$, then
i) when $R=\left|\tau^{*}\right|\left|\cos \psi_{0}\right|$ then $G M L_{0}^{2}$ is a surface of cone.
ii) when $R>\left|\tau^{*}\right|\left|\cos \psi_{0}\right|$ then $G M L_{0}^{2}$ is a frustrum of a cone.
4) if $m=2, n=1$, then (5) is a parametric represantation of classic regular Möbius band (see for example [2]), one-sided and one colored surface with one edge;
5) if $m=2, n$ is even number, then $G M L_{n}^{2} \equiv M_{n}$ is Möbius-Listing's type surface (see [4]) which is one-sided surface and one colored surface with one edge; if n is an odd number, then $G M L_{n}^{2}=M_{n}$ is two-sided and two-colored surfece, with two edges.
B) (Limiting case) If $m=\infty$, then $\mathbb{P R}_{\infty}$ is circular cylinder and its end \mathbb{P}_{∞} is a disk

$$
\begin{array}{cc}
p(\tau, \psi)=\tau \cos \psi, & \tau \in\left(0, \tau^{*}\right) \\
q(\tau, \psi)=\tau \sin \psi, & \psi \in(0,2 \pi) \tag{6}
\end{array}
$$

In this case transformation (4) has the following form:

$$
F=\left\{\begin{align*}
x(\tau, \psi, \theta) & =\left(R+\tau \cos \psi \cos \frac{n \theta}{R}-\tau \sin \psi \sin \frac{n \theta}{R}\right) \cos \frac{\theta}{R} \tag{7}\\
y(\tau, \psi, \theta) & =\left(R+\tau \cos \psi \cos \frac{n \theta}{R}-i \sin \psi \sin \frac{n \theta}{R}\right) \sin \frac{\theta}{R} \\
z(\tau, \psi, \theta) & =\tau \cos \psi \sin \frac{n \theta}{R}+\tau \sin \psi \cos \frac{n \theta}{R}
\end{align*}\right.
$$

or

$$
F=\left\{\begin{array}{l}
x(\tau, \psi, \theta)=\left(R+\tau \cos \left(\psi+\frac{n \theta}{R}\right)\right) \cos \frac{\theta}{R} \\
y(\tau, \psi, \theta)=\left(R+\tau \cos \left(\psi+\frac{n \theta}{R}\right)\right) \sin \frac{\theta}{R} \\
z(\tau, \psi, \theta)=\tau \sin \left(\psi+\frac{n \theta}{R}\right)
\end{array}\right.
$$

where n is any real number.
Remark 7. If $n=0$, formula (4) gives a parametric represantation of the classical torus (see, e.g., [3]).
a) Torus have one colored exterior surface without edges.
b) If $\tau \in\left(\tau_{1}, \tau^{*}\right)$ then (7) gives a parametric represantation of the torus-shell, with thickness $\tau^{*}-\tau_{1}$.
C) If in formula (6) plane figure \mathbb{P}_{4} - is a rectangle, then we have two different possibility:

1) Edges of rectangle are parallel to the coordinate axis:

$$
\begin{cases}x=\tau, & \tau \in\left(-\tau^{*}, \tau^{*}\right) \tag{8}\\ z=\psi & \psi \in\left(-\psi^{*}, \psi^{*}\right)\end{cases}
$$

in this case body
a)- $G M L_{0}^{4}$ - is a cilinder, with height $2 \psi^{*}$ and thickness $2 \tau^{*}$. This body have 4colored exterior or interior surface and 4 edges ;
2)Vertex of square lying on the coordinate axis:

$$
\begin{cases}x=\frac{\tau}{|\sin \psi|+|\cos \psi|} \cos \psi & \tau \in\left(0, \tau^{*}\right) \tag{9}\\ z=\frac{\tau}{|\sin \psi|+|\cos \psi|} \sin \psi & \psi \in(0,2 \pi)\end{cases}
$$

$\left.\mathrm{a}^{*}\right)-G M L_{0^{-}}^{4}$ is torus-shaped body, but is not cilinder, with cross-section - square. This body have 4 -colored exterior or interior surface and 4 edges ;

Two following examples are common for both cases and when in (8) $\tau^{*}=\psi^{*}$:
b)- $G M L_{1}^{4}$ or $G M L_{3}^{4}$ - is body with one colored exterior or interior surface and one edge;
c)- $G M L_{2}^{4}$ - is body with two colored exterior or interior surface and two edge;
II. In this part of the articl we give some examples of $G M L_{n}^{m}$ and its parameric represantation when
i') middle line 00 ' transforms in one class of tree dimensional courves (closed or nonclosed).

1) If middle line 00^{\prime} transforms in lemniscate

$$
\begin{aligned}
x & =R \sqrt{2 \cos 2 \theta} \cos \theta & & 0 \leq \theta \leq 2 \pi \\
y & =R \sqrt{2 \cos 2 \theta} \sin \theta & & R=\text { const }>0 \\
z & =K \sin \frac{\theta}{2} & & K=\text { const }>0
\end{aligned}
$$

($K=0$ classical lemniscate of Bernulli, but this courve is self-crossing); then parametric represantation of the lody $G M L_{n}^{m}$ is

$$
\left\{\begin{aligned}
x(\tau, \psi, \theta) & =\left(R+p(\tau, \psi) \cos \frac{n \theta}{m R}-q(\tau, \psi) \sin \frac{n \theta}{m R}\right) \sqrt{2 \cos 2 \theta} \cos \theta \\
y(\tau, \psi, \theta) & =\left(R+p(\tau, \psi) \cos \frac{n \theta}{m R}-q(\tau, \psi) \sin \frac{n \theta}{m R}\right) \sqrt{2 \cos 2 \theta} \sin \theta \\
x(\tau, \psi, \theta) & =K \sin \frac{\theta}{2}+p(\tau, \psi) \sin \frac{n \theta}{m R}+q(\tau, \psi) \cos \frac{n \theta}{m R}
\end{aligned}\right.
$$

This tree-dimensional body is not self-crossing if in addition of \mathbb{P}_{m} is smaller then K. 2) If middle line 00^{\prime} transforms in line (see remark 4) lying on the classical torus

$$
\begin{cases}x=\left(R+\tau_{0} \cos \left(\psi_{0}+n \theta\right)\right) \cos \theta, & \tau_{0}=\text { const, } \quad \psi_{0}=\text { const } \\ y=\left(R+\tau_{0} \cos \left(\psi_{0}+n \theta\right)\right) \sin \theta, & \theta \in(-\infty, \infty) \\ z=\tau_{0} \sin \left(\psi_{0}+n \theta\right) . & n \in \mathbb{R}^{1}\end{cases}
$$

In this case $G M L_{e}^{\infty}$ represented by following formula

$$
\left\{\begin{array}{l}
x=\left(R+\tau_{0} \cos \left(\psi_{0}+n \theta\right)+\tau \cos \left(\psi_{0}+\psi+n \theta+l \theta\right)\right) \cos \theta \\
y=\left(R+\tau_{0} \cos \left(\psi_{0}+n \theta\right)+\tau \cos \left(\psi_{0}+\psi+n \theta+l \theta\right)\right) \sin \theta \\
x=\tau_{0} \sin \left(\psi_{0}+n \theta\right)+\tau \cos \left(\psi_{0}+\psi+n \theta+l \theta\right)
\end{array}\right.
$$

where $\tau \in\left(0, \tau^{*}\right), \psi \in(0,2 \pi), \theta \in(-\infty, \infty), l \in \mathbb{Z}$.
The author is deeply grateful to N.Avazashvili and M.Nakashidze for a useful discussion of the questions examined in this article. Also autor is deeply grateful to daughter Sofia Tavkhelidze for a very intersting questions about this figures.

REFERENCES

1. Listing and Tait. Vorstudien zur Topologie, Göttingener Studien, Pt, 10. 1847.
2. Schwartz Laurent., Analyse Mathematique Cours Prof. a L'ecole Politechnique. V. II, Paris, Hermann, 1967.
3. Wagon S., Rotating Circles to Produce Torus or Möbius Strip, $\S 7.4$ in Mathematica in Action, New York W.H. Freeman 1991, 229-232.
4. Tavkhelidze I., On the some proporties of one class of geometrical figures. Bulletin of TICMI, vol. 4, 2000, Tbilisi, 51-55.
5. Tavkhelidze I. On the some properties of one class of geometrical figures and lines. Reports of Enlarged Sessions of the Seminar of I.Vekua Institute of Applied Mathematics, vol. 16, No.1, 2001, 35-38.
6. Tavkhelidze I., Some remarks on a class of geometric figures. Bulletin of TICMI, vol. 6, 2002, Tbilisi, 41-45.

[^0]: ${ }^{1}$ If we have two numbers $m \in \mathbb{N}, n \in \mathbb{Z}$, then $n=k m+i \equiv k m+\bmod _{m}(n)$, where $k \in \mathbb{Z}$ and $i \equiv \bmod _{m}(n) \in \mathbb{N} \cup\{0\}$.

