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Applying the represtation of the stress vector the so-called mutually adjount vector-
functions [4] we obtain an explicit solution to the basic boundary value problem of the
elastic mixture theory for an infinite isopropic plane with elliptic hole.

As is known, a homogenoues system of equations of the elastic mixture theory is
written as [4]

∂2U

∂z∂z̄
+ εT ∂2Ū

∂z̄2
= 0 U = {u1 + iu2, u3 + iu4}T , (1)

where up, p = 1, 4 are components of the partial displacement vector.

εT = −1

2
em−1, e =

[
e4 e5

e5 e6

]
, m =

[
m1 m2

m2 m3

]
, mk = ek + 0, 5e3+k, (2)

k = 1, 2, 3; the eq, q = 1, 6 are expressed in terms of the elastic constants [4].
Using analogues of the general Kolosov-Muskheliscvili represtations from [4] we can

write

U = mϕ(z) +
1

2
ezϕ′(z) + ψ̄(z), TU =

∂

∂s(x)
(−2ϕ(z) + 2µU(x)) , (3)

where TU = {(TU)2 − i(TU)1, (TU)4 − i(TU)3}T , (TU)p, p = 1, 4 are components
of the stress vector, ϕ = {ϕ1, ϕ2}T and ψ = {ψ1, ψ2}T are arbitrary analytics vector-

functions, µ =

[
µ1 µ3

µ3 µ2

]
, µk (k = 1, 2, 3) are elastic constants,

∂

∂s(x)
= n1

∂

∂x2

−

−n2
∂

∂x1

, n = (n1, n2) is an arbitrary unit vector.

From (3) we obtain

mTU =
∂

∂s(x)
[(AT − E)U − iV ], AT =

[
A1 A3

A2 A3

]
= 2mµ; (4)

where V = i

[
−mϕ(z) +

1

2
ezϕ′(z) + ψ̄(z)

]
is a vector adjount to U [4].
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Let an infinite isotropic plate be weakend by an elliptic hole with the semi-axes a
and b (a > b). This unbounded domain we denote by D−. The symmetry axes of the
ellipse are taken at the coordinate axes, and the major axis consiides with the real axis
ox1. By L we denote the elliptic curve under consideration. Denote by L1 that part of
the ellipse whith is located in the upper (x2 > 0) halt-plane and by L2 the part located
in the lower (x2 < 0) halt-plane.

Consider the following boundary value problem. Define a stress state in the un-
bounded domain D−

m(TU)−L1
=

F (ψ0)√
a2 sin2 ψ0 + b2 cos2 ψ0

, 0 ≤ ψ0 ≤ π,

(U)−L2
= f(ψ0), π ≤ ψ0 ≤ 2π,

(5)

where (a cos ψ0, b sin ψ0) ∈ L, f ∈ C0,α[π, 2π], α > 0, f ′(ψ0) and F (x0) belong to the
H∗ class on (π, 2π) and (0, π), respectively [5].

The displacement vector for an infinite plane with an elliptic hole will be sought in
the form [1]

U(z) =
1

2π

2π∫

0

[
(1− τ1τ̄1)g(ϕ0)

1− (τ1eiϕ0 + τ̄1e−iϕ0) + τ1τ̄1

− A0ε
T τ̄1e

−iϕ0 ḡ(ϕ0)

(1− τ̄1e−iϕ0)2

]
dϕ0, (6)

where g = (g1, g2) is an unknown complex vector, εT is define by (2), A0 = (1 −
−η1η̄1)(η̄

−1
1 − η2)(η̄1− η̄2)

−1, η1,2 = (z±√z2 − a2 + b2(a+ b)−1, τ1 = η−1
1 , z = x1 + ix2.

If we calculate the boundary value of the displacement vector by formula (6) at the
point (a cos ψ0, b sin ψ0), π ≤ ψ0 ≤ 2π, of the contour L2 and take into account the fact
that τ1 = e−iψ0 , τ̄1 = eiψ0 , then we obtain g(ψ0) = (U)−L2

= f(ψ0), π ≤ ψ0 ≤ 2π.
Consequently, we have defined g on L2. It remains to define it on L1 that g would

belong to the Hölder class on the entire contour of the ellipse.

Using now (4) and taking into account that V − =
1

2π

2π∫

0

ctg
ϕ0 − ψ0

2
g(ϕ0)dϕ0, for

the boundary value of the stress vector we obtain

(AT − E)g(ϕ0) +
1

2πi

2π∫

0

ctg
ϕ0 − ψ0

2
g(ϕ0)dϕ0 =

= m

ψ0∫

0

(TU)−
√

a sin2 ϕ0 + b2 cos2 ϕ0dϕ0 + c,

(7)

where c = (c1, c2) is an arbitrary constant vector.
Since g(ϕ0) for π ≤ ϕ0 ≤ 2π is known, after the transformartion t = eiψ0 , τ = eiϕ0 in

view of the obvious identity
1

2
ctg

ϕ0 − ψ0

2
=

dτ

τ − t
− dτ

τ
, the relation (7) for 0 ≤ ϕ0 ≤ π

will take the form

(AT − E)g(t) +
1

πi

∫

L+

g(τ)

τ − t
dτ = X(t) + B, t ∈ L+, (8)



Effective Solution of the Mixed Boundary Value... 55

where L+ is the unit semi-circumference located in the upper half-plane

χ(t) = {χ1, χ2}T = m

ψ0∫

0

F (ϕ0)dϕ0 − 1

πi

∫

L−

f(τ)

τ − t
dτ, 0 ≤ ψ0 ≤ π, (9)

B = {B1, B2}T = c +
1

2πi

∫

L+

g(τ)dτ

τ
+

1

2πi

∫

L−

f(τ)dτ

τ

is an arbitrary constant vector, and L− is the unit semi-circumference located in the
lower half-plane.

Since f is Hölder continuous, therefore at the ends of the line L+ vector χ has a
logaritmic singularity and belongs to the class H∗

ε [5].

Thus with respect to the vector g(t) for t ∈ L+ we have obtained a charasteristic
system of singular integral equations of the type (8). This system is a normal type
since det AT > 0 and det(AT − 2E) > 0 (see [3]).

By the method given in [2] we can reduced system (8) to the system of the equations
with respect to the scalar unknown functions hj = g1 + yjg2, j = 1, 2 on the contour
L+

pjhj +
1

π2

∫

L+

hj(τ)

τ − t
dτ = Rj + Qj;

Rj = χ1 + yjχ2, Qj = B1 + yjB2, j = 1, 2;

(10)

where pj = 0, 5
[
A1 + A4 − 2− (−1)j

√
(A1 + A4) + 4A2A3

]
, pj + 1 > 0, pj − 1 < 0,

j = 1, 2, y1 and y2 are roots of the equation A2y
2 + (A1 − A4)y − A3 = 0.

According to the general theory (see [5]) define the character of the end points

of the line of integration. Introduce the number γj =
1

2π
ln

pj − 1

pj + 1
=

1

2
+ iβ; βj =

=
1

2π
ln

∣∣∣∣
pj + 1

pj − 1

∣∣∣∣, j = 1, 2.

Hence the ends of the line L+ are nonsingular. Solutions of the equations (10)
will be sought in the class of functions wich are bounded at the ends. The canonical
solutions of the corresponding homogeneous problem of linear conjugation will have
the form X0(z) = (z + 1)γj(z − 1)1−γj , z = x1 + ix2, where the branch is considered

which is holomorphic on the plane cut along L+, and satisfies z−1
(j)

X
0

(z) → 1 as z →∞.

Hence we can see that the index of that class is equal -1, and the solutions of the
equations (10) have the form (see [5])

hj =
1

p2
j


pj(Rj + Qj)−

(1)

X+
0 (t)

πi

∫

L+

Rj(τ) + Qj

(j)

X+
0 (τ)(τ − t)

dτ


 , j = 1, 2, (11)
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proveded the conditions of solvability

∫

L+

(Rj(τ) + Qj)

(
(j)

X+
0 (τ)

)−1

dτ = 0, j = 1, 2, are

satisfied, where
(j)

X+
0 is the boundary value of the function

(j)

X0(z) on L+ from the left.

Taking into account

∫

L+

(
(j)

X+
0 (τ)

)−1

dτ = −πi(1 + pj), j = 1, 2, we can conclude

that the solvability conditions for the equations (10) in the class of functions, which
are bounded at the ands, are fulfilled.

Having found the functions hj, j = 1, 2, we can define the vector g on L+ as
g = (g1, g2)

T , where g1 = (h1y2 − h2y1)(y2 − y1)
−1, g2 = (h1 − h2)(y1 − y2)

−1.
Using the results obtained in [5], the vector g is proved to the belong to the Hölder

class on the entire contour of the L.
Thus the mixed BV Ps is solved. Obviously, the general case where the ellipse is

divided into several parts, can be solved in a similar way.
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