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Abstract

The stability of a method of the solution of an integro-differential equation for a string is

studied.
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1. Formulation of the Problem

Let us consider the Kirchhoff equation

(
1 + δ

1∫

0

(w′)2 dx
)
w′′ = f, 0 < x < 1, (1.1)

describing a static state of a string [1]. Here w = w(x) is the deflection function to be
found, f = f(x) is a given load function, δ > 0 is the known mechanical parameter.

Let the boundary condition

w(0) = α, w(1) = β (1.2)

be fulfilled.

We write the function w(x) in the form

w(x) = W (x) + (β − α)x + α, (1.3)

where W (x) is a solution of the problem

[
1 + δ

1∫

0

(W ′ + β − α)2 dx
]
W ′′ = f, 0 < x < 1, (1.4)

W (0) = 0, W (1) = 0. (1.5)
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2. Method of Solution

To find W (x) we will use the method proposed in [2, 3]. Let us briefly describe its
essence. The function W (x) is written in the form

W (x) = λν(x), (2.1)

where λ and ν(x) are the parameter and the function to be found. Substituting (2.1)
into (1.4), we obtain

λ
[
1 + δ

1∫

0

(λν ′ + β − α)2 dx
]
ν ′′ = f. (2.2)

Equality (2.2) is replaced by the system of equations

ν ′′ = f,

λ
[
1 + δ

1∫

0

(λν ′ + β − α)2 dx
]

= 1.

As follows from (1.5) and (2.1), the function ν(x) vanishes on the boundary and

hence we obtain the equality
1∫
0

ν ′ dx = 0. Therefore the function ν(x) and the param-

eter λ satisfy the relations
ν ′′ = f, (2.3)

ν(0) = 0, ν(1) = 0 (2.4)

and

λ[1 + δ(λ2s + c2)] = 1, (2.5)

where

s =

1∫

0

(ν ′)2 dx, (2.6)

c = β − α.

Thus problem (1.4),(1.5) has been reduced to finding first the function ν(x) from
(2.3),(2.4) and then the parameter λ from (2.5).

Once the parameter λ and the function ν(x) have been obtained, the solution of
the initial problem (1.1),(1.2) is determined due to (1.3) and (2.1) by the relation

w(x) = λν(x) + (β − α)x + α. (2.7)

From the fact that problem (2.3),(2.4) has a unique solution and the cubic equation
(2.5) satisfies the uniqueness condition of a real root [4] it follows that the function
w(x) constructed by (2.7) is a solution of problem (1.1),(1.2).
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Let the function f(x) have a sufficient degree of smoothness. The solution of prob-
lem (2.3),(2.4) is written as

ν(x) = (x− 1)

x∫

0

ζf(ζ) dζ + x

1∫

x

(ζ − 1)f(ζ) dζ, (2.8)

while the parameter s, which participates in the derivation of the cubic equation (2.5),
is calculated on the strength of (2.6) and (2.8) by

s =

1∫

0

[ x∫

0

ζf(ζ) dζ +

1∫

x

(ζ − 1)f(ζ) dζ
]2

dx. (2.9)

3. Method Error and Its Estimation

The method described above gives an exact solution of equation (1.1) if the bound-
ary condition (1.2) is satisfied and all calculation stages are carried out without any
error. However it is natural to assume that integrals (2.8) and (2.9) are found by means
of quadrature formulas, i.e. approximately. This circumstance affects the final result.
Let us find out how sensitive the method is to an error of the above-mentioned kind.

Note that if round-off errors are not taken into account, in the considered case there
are no other reasons for a change of the result .

So, let the realization of (2.8) lead not to an exact solution ν∗(x), but to its approx-
imation ν̃(x). Analogously, assume that calculations by (2.9) have been carried out
approximately. Then in equation (2.5) the exact value of the parameter s∗ determined
by equality (2.9) is replaced by its approximate value s̃. As a result, we obtain not the

exact solution λ∗ of equation (2.5) but its approximation λ̃. Thus formula (2.7) leads
not to the exact solution w∗(x) of problem (1.1), (1.2) but to its approximate value
w̃(x).

From (2.7) we have

|w̃(x)− w∗(x)| ≤ |λ̃− λ∗||ν̃(x)|+ |λ∗||ν̃(x)− ν∗(x)|. (3.1)

Denote by λ(s) the functional dependence of the parameter λ on s defined by
formula (2.5). Since

λ̃− λ∗ = λ′(η)(s̃− s∗), (3.2)

where η is some point of a segment with boundary points s̃ and s∗, we have

|λ̃− λ∗| ≤ M∆s. (3.3)

Here ∆s is the upper boundary of the error |s̃ − s∗|, while according to (3.2) and
(2.6) the value M is determined by the equality

M = max
s
|λ′(s)|, (3.4)
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where max(0, s̃−∆s) ≤ s ≤ s̃ + ∆s.
Taking (3.3) into account in (3.1), we obtain

|w̃(x)− w∗(x)| ≤ M∆s|ν̃(x)|+ (|λ̃|+ M∆s)∆ν(x) ≤

≤ M∆s(|ν̃(x)|+ ∆ν(x)) + |λ̃|∆ν(x), (3.5)

where ∆ν(x) is the upper boundary of the error |ν̃(x)− ν∗(x)|.
4. Calculation of the Parameter M

Using the Cardano formula for a real root [4] in (2.5), we get the function

λ(s) = p1 + p2,

which, after differentiation, can be written as

λ′(s) =
1

2

[1

s
(p2

1 + p2
2) + δ

q2
2

q1

(p2
1 − p2

2)
]
. (4.1)

Here we have used the notation

pk =
{ 1

2δs
+ (−1)k

[(1 + δc2

3δs

)3

+
( 1

2δs

)2] 1
2
} 1

3

,

qk =
[
3k−1

(1 + δc2

3δs

)3

+ 2k−1
( 1

2δs

)2] 1
2
,

(4.2)

k = 1, 2.

We cannot find M by means of (3.4) and (4.1),(4.2) and have to resort to a differnt
way to solve this question.

Since to each s there corresponds a unique λ, there exists an inverse function to
λ(s), which we denote by s(λ). From (2.5) it follows that

s(λ) =
1

δ

( 1

λ3
− 1 + δc2

λ2

)
. (4.3)

From (2.5) and (2.6) we obtain

0 < λ ≤ 1

1 + δc2
(4.4)

and s ≥ 0, while (4.3) and (4.4) imply

s′(λ) =
2

δ

(1 + δc2

λ3
− 3

2λ4

)
< 0, (4.5)

s′′(λ) =
6

δ

( 2

λ5
− 1 + δc2

λ4

)
> 0.

Thus s(λ) is a decreasing function with nonnegative values and s′(λ) is an increasing
function with nonnegative values.
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Using these properties and the relation

λ′(s) =
1

s′(λ)
, (4.6)

we see that if λ increases, then so does s′(λ), and if s decreases, then s′(λ) increases.
Therefore if s decreases, then so does λ′(s). This means that λ′(s) is an increasing
function.

Now, taking into account that by virtue of (4.5) and (4.6) λ′(s) < 0 and using (3.4),
we arrive at the equality

M = −λ′( max(0, s̃−∆s)). (4.7)

Substituting (4.7) into (3.5), we obtain the final estimate

|w̃(x)− w∗(x)| ≤

≤ −λ′( max(0, s̃−∆s))∆s(|ν̃(x)|+ ∆ν(x)) + |λ̃|∆ν(x). (4.8)

About calculation of the right-hand side of (4.8). The function ν̃(x) and the values

s̃ and λ̃ are found by realization of the algorithm. The value of the function λ′(s) at
the point max(0, s̃ − ∆s) is obtained by means of (4.1) and (4.2). A relatively rare
case with s̃−∆s < 0 should be treated individually. We have to calculate λ′(0). Then
formula (4.2) is not suitable. Our arguments are as follows: (4.3) and (4.5) imply that
if s = 0, then λ = 1/(1 + δc2) and s′(1/(1 + δc2)) = −(1 + δc2)4/δ. Therefore from
(4.6) we have λ′(0) = −δ/(1 + δc2)4.

As to the question of finding the function ∆ν(x) and the value ∆s, we will discuss
it in the next section.

5. Calculation of ∆ν and ∆s

Let the segment [0, 1] be covered by a grid with pitch h = 1/n and nodes xi = ih,
i = 0, 1, . . . , n. We will limit our consideration to the case where the solution of problem
(1.1), (1.2) by the method described above must be known at the nodes of the intro-
duced grid. Then in equality (2.7) x takes successively the values xi, i = 1, 2, . . . , n−1.
Suppose that to calculate integrals in this equality we use some quadrature formula,
for instance, a general formula for trapezoids [5], where the nodes of the introduced
grid are used. Assume that the same quadrature formula will be used for calculations
by (2.8).

Simultaneously with finding ∆ν and ∆s, we will derive respective formulas for ν̃(x)
and s̃ contained in estimate (4.8).

Note that the restrictions connected with a set of considered values of the variable
x and with a choice of a quadrature formula are not of fundamental character.

So, to calculate the integral

I =

xi2∫

xi1

ϕ(x) dx, (5.1)
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where 0 ≤ i1 < i2 ≤ n and ϕ(x) is some twice continuously differentiable function on
the integration segment, we use the general quadrature formula of trapezoids

I = h
(ϕ(xi1) + ϕ(xi2)

2
+

i2−1∑
i=i1+1

ϕ(xi)
)
, (5.2)

the remainder term of which is estimated by

|R| ≤ (xi2 − xi1)h
2

12
max

xi1
≤x≤xi2

|ϕ′′(x)|. (5.3)

We apply (5.1)–(5.3) first to (2.8) and obtain

ν̃(xi) = (xi − 1)
i∑

j=1

xjf(xj) + xi

n−1∑
j=i+1

(xj − 1)f(xj).

Since the equality

[ψ(ζ)f(ζ)]′′ = 2f ′(ζ) + ψ(ζ)f ′′(ζ), (5.4)

where ψ(ζ) = ζ, ζ − 1 is fulfilled for the second derivatives of the integrand function
in (2.8), we obtain

∆ν(xi) ≤ xi(1− xi)h
2

12
×

×
(

max
0≤x≤xi

|2f ′(x) + xf ′′(x)|+ max
xi≤x≤1

|2f ′(x) + (x− 1)f ′′(x)|
)
≤

≤ xi(1− xi)h
2

6

(
2 max

0≤x≤1
|f ′(x)|+ max

0≤x≤1
|f ′′(x)|

)
. (5.5)

(5.5) contains two estimates for ∆ν(xi), one of which, more complicated than the
other, is more exact.

Now about ∆s and s̃. Let us introduce into consideration the function

ψ(x) =

x∫

0

ζf(ζ) dζ +

1∫

x

(ζ − 1)f(ζ) dζ.

By (2.9)

s =

1∫

0

ψ2(x) dx.

The integrals occurring in the expression for s are calculated by means of (5.2).
The result representing the value of s̃ is

s̃ = h
[ ψ̃2(x0) + ψ̃2(xn)

2
+

n−1∑
i=1

ψ̃2(xi)
]
.
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Here

ψ̃(xi) = h
[ i∑

j=1

xjf(xj)− 1

2
f(xi) +

n−1∑
j=i+1

(xj − 1)f(xj)
]
, (5.6)

i = 0, 1, . . . , n, is an approximate value of the integral

ψ(xi) =

xi∫

0

ζf(ζ) dζ +

1∫

xi

(ζ − 1)f(ζ) dζ, (5.7)

which is found by means of the quadrature formula (5.2).
To estimate ∆s, let us consider this value as a sum of two errors

∆s = ∆s1 + ∆s2, (5.8)

the first of which is a consequence of the fact that the integral in (2.6) is calculated
approximately, while the presence of the second error is explained by the fact that
the integrand function in this integral is, as follows from (2.9), a square of the integral
expression and thus in its turn is given by an error. More exactly, in (5.8) ∆s1 and ∆s2

are the upper boundaries of the error absolute values obtained respectively because we
use the quadrature formula in (2.6) and because in this quadrature formula the values
of the function at the nodes are determined by means of an approximate integration
formula.

Taking into account (2.3), for the integrand function in (2.6) we have

[(ν ′)2]′′ = 2ν ′ν ′′′ + 2(ν ′′)2 = 2(ν ′f ′ + f 2), (5.9)

while from (2.8) we obtain the equality

ν ′(x) =

x∫

0

ζf(ζ) dζ +

1∫

x

(ζ − 1)f(ζ) dζ,

which, after applying the theorem on the mean, leads to an estimate

|ν ′(x)| ≤ 1

2
max
0≤x≤1

|f(x)|. (5.10)

Using (5.9), (5.10) and (5.3), we write

∆s1 ≤ h2

6

[1

2
max
0≤x≤1

|f(x)| max
0≤x≤1

|f ′(x)|+ ( max
0≤x≤1

|f(x)|)2
]
. (5.11)

To derive an estimate for ∆s2, we recall how an error of the function of n + 1

variables z =
n∑

i=0

aiy
2
i , where ai > 0 are coefficients, is estimated. If instead of exact

values of the arguments yi we use their approximate values ỹi, i = 0, 1, . . . , n, then
instead of the exact value z of the function we obtain its approximate value z̃, and
moreover

|z̃ − z| ≤
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≤
n∑

i=0

ai(|ỹi|+ |yi|)|ỹi − yi| ≤
n∑

i=0

ai

2∑

k=1

(2|ỹi|)2−k|ỹi − yi|k. (5.12)

If a0 = an = h/2, ai = h, i = 1, 2, . . . , n− 1, yi = ψ(xi), ỹi = ψ̃(xi), i = 0, 1, . . . , n,
then |z̃− z| = ∆s2 and ỹi− yi is an error that arises because of the replacement of the
integral expression (5.7) by sum (5.6). Using (5.12), (5.3) and (5.4) we find

∆s2 ≤ h

n∑
i=0

εi

2∑

k=1

(2|ψ̃(xi)|)2−k
[xih

2

12
max

0≤x≤xi

|2f ′(x) + xf ′′(x)|+

+
1− xi

12
h2 max

xi≤x≤1
|2f ′(x) + (x− 1)f ′′(x)|

]k

, (5.13)

where the parameter εi is equal to 1/2 for i = 0 and i = n, and is equal to 1 in other

cases, while the values ψ̃(xi) are calculated by (5.6) in the process of realization of the
algorithm.

Summing (5.11) and (5.13) and taking into account (5.8), we obtain the desired esti-
mate for ∆s. Using the latter estimate, we can derive a less exact but more convenient
estimate

∆s ≤ h2

6

[1

2
max |f(x)|max |f ′(x)|+ ( max |f(x)|)2

]
+

+
2∑

k=1

( max |f(x)|)2−k
[h2

12
(2 max |f ′(x)|+ max |f ′′(x)|)

]k

,

where max implies everywhere the relation 0 ≤ x ≤ 1.
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