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This paper deals with the bending vibration caused by interaction of a viscous fluid
with a cusped plate considered in [1] (see this issue). In what follows all refeneces to
formulas from [1] will be indicated by the index p, e.i., (1),.

We consider the interface problem of the interaction of a plate whose projection on
x3 = 0 occupies the domain €2

Q={(21,29,23) 1 —00 <z <00, 0<my <, w3=0},
and thickness is given by the following equation
2h(xs) = hoxS"* (1 — 22)°/®, ho, L, B = const, hg, 1 >0, a, >0, (1)

and of a flow of the fluid. Let the flow of the fluid be independent of z;, parallel to
the plane Oxox3, i.e. v1 = 0, and generating bending of the plate. Let at infinity, for
pressure we have

p(22,x3,1) = poo(t), when |z| — o0, (2)

and let for the velocity components conditions at infinity be
’Uj(lEm[Eg,lf) = O(l), ] = 2,3, (3)

where v := (vq, v3) is a velocity vector of the fluid, p(zs, x3,t) is a pressure, and py(t)
is given functions.

We suppose the fluid occupies the whole space R* but the middle plane Q of the
plate.

Let,

I :={[0,1] x 0},
af = {3517552,1’3 cx1 =0, z:= (2, 73) € RQ\I}’
vy, vy € CHO)YNCH(t > 0).
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Transmission conditions for v;(zs,x3,t), 7 = 2,3, can be written in the following
form (compear with [2], [3], [4])

'UQ(.ZEQ,O,t) = O, ) E]O,l[, t > O,

t
v(29,0,1) = %, 5 €01, ¢ 0.

(4)

Because of incompressibility we have

divo(zy, x3,t) = 0, (29,23) € Q. >0, (5)
and (see e.g., [5], p.5)
Ov;  Ov
f J k ;
o = —pdi + + , J,k =const =2,3, 6
ik = —Ddjk “(axk ax) J (6)

where ajfk is a stress tensor, u is a coefficient of viscosity, 05 is Kroneker delta.

From (5) and (6) we obtain

vz (79, 73,1)

053(3?2,373,15) = —p(xg,z3,t) + 2 5
3
Ovg(x9, 3,1
= —p($2;$3,t)—2u2(6+23). (7)

In virtue of (7) and (4) yields

(£)
ol (22,0,t) = p* (22,0, 1).

Transmission conditions for p, taking into account of smallness of the thickness, we
rewrite as follows

—p T (22,0,t) + p~ (22,0,t) = qo(2,t), z2 €]0,1[. (8)

Let the motion of the fluid be sufficiently slow, i.e., v; and v;; (i,k = 2,3) be
so small that linearization of Navier-Stokes equations (see [2], [3], [4]) be admissible.
Hence,

ov 1 0

; o (9)
v

B ony A+ Bianaa )

0? 0?

where v = u/pf, A = F := (F3, F3) is a volume force. Let

052 " o
v; € CHONNCRHNCO{>0), i=2,3;
p € C*(Y);

q,2 (7t) € H([Oal])a
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o1

and
F e C*HQY), i=2,3.

where H is the class of Holder continious functions.
Let

2

A®(t) := lim /Fz(fz,xz,,f)dfz;

|| =00

0

and
Fg(l’g, xs3, t)||z|—>oo = 0(1)

After differentiation of the first equation of (9) with respect to xs, of the second
equation of (9) with respect to z3 and termwise summation, by virtue of (5), we obtain
that p(zs, x3,t) is satisfying the following equation

oF, OF
Ap(zg, 3,t) = <8_932 + 8_:vj> o

In case of harmonic vibration in the fluid part, from (5), (9), (10) we obtain the
following system (see formulaes (11),, (12),)

(10)

OF?  OFY
A _ 222 . 773 11
po(T2,23) = p (&rg + 8:03)’ (11)
1 apo . .
2.0 __ 0 0 _
—Ww u_] = —Fa—m] + VZC()AU/]- -+ F} ($2,I3)7 J = 2737 (12)

where Fj(z2,23) = ' F} (22, 3).
Transmission conditions (8), (4), conditions at infinity (2) and (3) have the following
forms

—pg (22) + py (22) = qo(x2), 2 €]0,1], (13)
ug(:vg, 0) = wo(z2), ug =0, x5 €]0,!], (14)

After separating the real and imaginary parts in (12) we have

0 1 8p0 1

— 0 P
Uy = WQ—IOfa—%—EFJ (IE27$3)7 Jj=23, (16)
Aul =0, j=2,3. (17)
Therefore, taking into account (11),
o (OF) OFY .
_ AF? =0, j=2,3. 18
al‘j (8.1'2 + 81’3 + J > ’ ( )
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Therefore, taking into account (13),
0 OFY N OFY
c%j 8%2 81’3

) +AF) =0, j=2,3. (19)

We can rewrite (19) in the following form

F9 F9
0 (82_83):07 j:2a37
835]- 3:153 8332

ie.,
OF)(x9,x3)  OF2(x9,13)
03 B 0xs
The solution of the equation (11) under condition (13), (15), using formula (20),
has the following form (see [6])

= const, (20)

l T2

] qo(&2)d&s f/ 0
mlanm) = =5 | om0 e
0
T

where A® := AFe™!.
Substituting (21) into (12), for u3 and u3 we obtain

l
0 o T3 %(fz)(& — 13)d&s
u2($2,$3) - 7Tw2pf/ [(52—$2)2+$§]27 (22)
0
l 2
__ 1 go(&2)[7] — (& — 22)?] 1 [OFY
e 2m2pf0/ (&-mp+aer 2 / aay I
- éFg(I%ZEg)).

After consideration the limit of u3(xy, z3) when x3 — 0, x5 €0, 1], we have

!
lim ug(:cg,xg) ; lim xg/qo(fg) << 1 5 2) dé&s
0 2

23—0 2w? pf 250 §o — 12)? + 23
l l
1
_ lim z3q0(1) - 2340 (0 :L‘;;/ 4 52 _dg,
C 2mw2pfas—0 ) (I —a9)2+ 23 a3+ 3 (& — x2)? + 23
0

_ /l qp(&2) (w3 + (§2 — 2) — (§2 — 72))
T 21w Pf%—’ (&2 — 9)? + 3

A&y

- /q ©)rs+ (6= ) /Z%(fa)(fz )

27Tw2pfx3—> (& — x9)% + 23 (& — x9)? + 22

5 &2
0
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I I
1 a0 (&2) dé, — q0(&2)
2rw?pl / Co—my / §2 — T2

dé,| = 0.

The last expression means that transmission condition (14), for u3(zs, x3) is fullfiled.
Let now consider the following limit, when z5 €]0, ],

- jqo<52>[ =ty {2

23—0 [(§&2 — x2)% + :c3] (I —22)* + a3

l

_ ] —
o0 m2+x3 / q0(&2) 52 I2>d§2 - hm {qo(l)< Ty

/ (§o — )2 (1= 22)2 + 23
+Q0(0>x2j‘ 3 O/Z 52_—61095‘32)]‘5%%_ = e
—a o]} d = i {anl =
)ty - 2 (e / ) ) 6 ),

0
(becouse of qp € H([0,1]))

W) | l0) o mw / dh(62) — dble) 5

§o — @2

On the other hand if we define the following supersingular integral as H’adamard
integral, we analoguosly obtain

/l q0(&2) &) e, — i 78( q0(&2) d, + /l (%(&) d§2+2610£1‘2)

(&2 — x9)? £y — x9)? Eo — x9)?

0 xo+te

_ Q6(l'2)lnl — T2 / q0(&2) — (@)dfg.

[ — To T2 §2 — T

Hence, using transmission condition (14) for u}, we get the following expression

l

qo(& OF; y
wnle) =~ [ dea+ / Le0d  28)
0 0

1
— EFy?(.TQ,O), T2 E]O,l[,
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where the supersingular integral on the right hand side we define as H’adamard integral
(see [9], [10]).
For the diflection we have the following equation (compear with (9), from [1])

(hg(x2)w3(332))” = qo(w2) + 207 p*h(wa)wo(z2), (25)

where p® is a density of the plate. This equation we solve under boundary conditions
giving in [1] (see this issue), Problems 1,-10,. In [7] and [8] is shown that equation
(25) cab be reduced to the integral equation with symmetric positive definite kernel,
and it solution has the following form

l l

l
/ K (22, )0 (€)dE + &2 / / P (a1, Ng(m) K (1, €)dn | qol€)de
0

0 0
l

— / K (2, €)qol€)de, (26)

0

where I'(z9,&, A) is a resolvent of the symmetric kernel K(z2,1)v/g(z2)g(n) (for the
explicit form of K (x9,7n) (see [7], [8])). Kz, is a continious function with respect to
x9 and &, and it is defined from the equation (9), and depends on Problems 1,-10,,.

Substituting (24) into (26), for go(z2) we obtain the following supersingular integral
equation

I !
0 g;]o_ 73)? Sdéy + 2mw?p O/Kl(%,&)%(fz)dfz
| for .
= 27p a—%(gg, 0)déy + F5(0,0) — F5(22,0) | =: f(x2). (27)
0

We will find approximate solution of (27) using the method of solving given in books
9], [10] for g)(z2) := (dgo(r2)/dzz) € H([0,1]).
Let divide interval [0,{] into N parts as follows

lk — lk [ _
—, k=0,N ==+ -—, k=0,N—-1
N’ 07 y Yk N + IN’ 07 )
don = (20 (%0), -, 0 (ym,)),
we will call gony approximate solution of (27). For gy we get the following system of
linear equations

Yy =

1
——qo u) Zqo vi) { -

y_] +1 yZ y] - yZ
#z

Z Kl ylvyJ>QO(y]) f(yl)7 1= 07N -1 (28)

7=0

2 w? fl
N p
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It is well-known (see [10]) that the determinant of the system (28) is not zero.
Therefore, (28) is uniquely solvable.

Now, we have to estimate the error of the approximate solution of the equation
(27). Let us denote by ¢ the solution of (27), by ¢y the solution of (28) and let ¢y
be a projection of ¢; on y;. Further, we obtain

_g(QON(yl) Gon (i) Z{QON v;) QSN(yj)}{ / : e }

Yiri — Yi y;‘ —Yi

J#Z

_/l(f—(g))dg_ ON%JFZ%N%{ — - }

y] —+1 y’L y] - y’b

J#Z

/

Yit1

[ % (8) — 45 (yi %(yy)
| sazg S szt o

/

v, Yi

J#l

Therefore, since ¢j(x2) € H([0,1]), we have that there exist A = const > 0, and
aq = const, 0 < ay < 1 such that

|90 (y1) — ao(y2)| < Alyr — 2|
Using the following expression

y§+1

e o 1J@N)
=Inl¢ —y| " =1In =0,

/ ey T uhT =N

Yi

we obtain

. 71(16‘(5)—QS(yi)—(ﬁ—yz-){qu |_yl}d5

4 (€ —yi)?
Yi
Yiga dg5(§) _ dag

d90(8) Ll

d€ E=y; 2N>
= | < A ( . 29
4 §—ui l (29)
Yi
Analogously, we get
2N\
I <AN-1) (T) . (30)

From (29) and (30) we obtain that the error of this method might be too large. For
getting the most better results instead of the system (28) we consider the following
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system
1
o (i) E:%%[%H Yi %—A
S it = f). =0T 1
§=0
where

4N d& o ;ponoy n
Ay = l / (5 — yi)Qa Au — [0, l] N [yz Nayi—f—l + N] )
n=VN 3=

After repeating above calculation we get

2n
|QO_QON|<A(Z) )

where ¢f and ¢jy are the solutions of the equations (27) and (31) respectively.
After calculating gon, from (19) and (24) we get approximate expressions for py(xz, 23)
and wy (), as follows

N-1 T2
.273l

po(2,23) = Z L yJ +Pf/F2(§2,903)d52
0

27TN y]—l‘g +3§

+ py +A0, (xg,xg)EQf;

N-1
1 / 1 1

port —Yi Y i

iz aF2 (527 >d£2 (yz; O) , Io E]O, l[,

w
0

Let us denote by wy(y;) the projection of wy on y; and let estimate the error of the
approximate solution of deflection. If we repeat the above calculation we get

) — walo] < 2 (F)

< 2pf Tw?

Further, after Substituting po(z2, 3) in (16) we obtain u)(zs, x3).

Z qo y] y] - 952)2)

ua(2, 23) [(y; — x9)? + 23]?

27N w2 p!
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1 8F
+E 2 (52; x3)dEs — F3(22,23) | |
0 QO y] x2) f
5 = ’ ) € Q .
(2, 3) ﬂNprf [(y; — x2) +x§]2 (w2, 23)

Proposition In case of the harmonic vibration of the plate with two cusped edges
under action of the incompressible viscous fluid [i.e., equations (11), (12), (25) under
transmission conditions (13), (14) conditions at infinity (15) and BCs (see Problems 1,-
10, in[1])] all quantities can be expressed by lateral load (qo(x2)) [see formulas (21)-(24)]
and for the calculating of qo(x2) we get (27) type super singular integral equation, where
supersingular integral is defined as H’adamard integral. This equation has solution in
class gy € H([0,1]).
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