Seminar of I. Vekua Institute of Applied Mathematics
 REPORTS, Vol. 28, 2002

A CUSPED ELASTIC PLATE-IDEAL INCOMPRESSIBLE FLUID INTERACTION PROBLEM

Chinchaladze N.
I.Vekua Institute of Applied Mathematics

Received: 30.10.2002; revised: 17.12.2002

Key words and phrases: Cusped elastic plate, incompressible fluid, solid-fluid interaction, boundary value problems

AMS subject classification (1991): 74F10, 74K20
Last years the direct and inverse problems connected with the interaction between difference vector fields have received much attention in the mathematical and engineering scientific literature and have been intensively investigated. A lot of authors have considered and studied in deteil the interaction problems of interaction between an elastic isotropic body, which occupies a bounded region and where a three-dimensional elastic vector field is to be defined, and some isotropic medium (e.g, fluid), which occupies the unbounded exterior region. But interaction problems when the profile of an elastic part is cusped one on some part or on the whole boundary was not considered. The present work is devoted to such problems.

Let us consider the interface problem of the interaction of a plate whose projection on $x_{3}=0$ occupies the domain Ω

$$
\Omega=\left\{\left(x_{1}, x_{2}, x_{3}\right):-\infty<x_{1}<\infty, \quad 0<x_{2}<l, \quad x_{3}=0\right\}
$$

thickness is given by the following equation

$$
\begin{equation*}
2 h\left(x_{2}\right)=h_{0} x_{2}^{\alpha / 3}\left(l-x_{2}\right)^{\beta / 3}, h_{0}, l \alpha, \beta=\text { const, } h_{0}, l>0, \alpha, \beta \geq 0 \tag{1}
\end{equation*}
$$

and of a flow of the fluid. Let the flow of the fluid be independent of x_{1}, parallel to the plane $0 x_{2} x_{3}$, i.e. $v_{1} \equiv 0$, and generating bending of the plate. Let at infinity, for pressure we have

$$
\begin{equation*}
p\left(x_{2}, x_{3}, t\right) \rightarrow p_{\infty}(t), \text { when }|x| \rightarrow \infty, \tag{2}
\end{equation*}
$$

and let for the velocity components conditions at infinity

$$
\begin{equation*}
v_{2}\left(x_{2}, x_{3}, t\right)=O(1), \quad v_{3}\left(x_{2}, x_{3}, t\right) \rightarrow v_{3 \infty}(t) \tag{3}
\end{equation*}
$$

where $v:=\left(v_{2}, v_{3}\right)$ is a velocity vector of the fluid, $p\left(x_{2}, x_{3}, t\right)$ is a pressure, and $v_{3 \infty}(t)$, $p_{\infty}(t)$ are given functions.

In what fellows we suppose that the plate is so thin that, we can assume: the fluid occupies the whole space R^{3} but the middle plane Ω of the plate.

Let,

$$
\begin{aligned}
& I:=\{[0, l] \times 0\} \\
& \Omega^{f}:=\left\{x_{1}, x_{2}, x_{3}: x_{1}=0, x:=\left(x_{2}, x_{3}\right) \in \mathbb{R}^{2} \backslash I\right\}, \\
& v_{2}, \quad v_{3} \in C^{1}\left(\Omega^{f}\right) \cap C^{1}(t>0) .
\end{aligned}
$$

Transmission conditions for $v_{3}\left(x_{2}, x_{3}, t\right)$ we can write in the following form (compear with [1], [2], [3])

$$
\begin{equation*}
\left.v_{3}\left(x_{2}, 0, t\right)=\frac{\partial w\left(x_{2}, t\right)}{\partial t}, \quad x_{2} \in\right] 0, l[, \quad t \geq 0 \tag{4}
\end{equation*}
$$

Because of incompressibility we have

$$
\begin{equation*}
\operatorname{div} v\left(x_{2}, x_{3}, t\right)=0, \quad\left(x_{2}, x_{3}\right) \in \Omega^{f}, \quad t \geq 0 \tag{5}
\end{equation*}
$$

In case of ideal fluid in virtue of $\sigma_{j k}^{f}=-p \delta_{j k}$ we get

$$
\sigma_{33}^{f}\left(x_{2}, \stackrel{(\pm)}{h}\left(x_{2}\right), t\right)=-p\left(x_{2}, \stackrel{ \pm}{h}\left(x_{2}\right), t\right)
$$

where $\sigma_{j k}^{f}$ is a stress tensor, $j, k=2,3$
Therefore, the transmission condition for p has the following form

$$
\begin{align*}
& -p\left(x_{2}, \stackrel{(-)}{h}\left(x_{2}\right), t\right) \cos \left(\vec{n}\left(x_{2}, \stackrel{(-)}{h}\left(x_{2}\right)\right), x_{3}\right) \tag{6}\\
& \left.-p\left(x_{2}, \stackrel{(+)}{h}\left(x_{2}\right), t\right) \cos \left(\vec{n}\left(x_{2}, \stackrel{+}{h}\left(x_{2}\right)\right), x_{3}\right)=q\left(x_{2}, t\right), x_{2} \in\right] 0, l[,
\end{align*}
$$

where $q\left(x_{2}, t\right)$ is a lateral load of the plate.
In case of the potential motion of the flow there exists a complex function $\Phi=\psi+i \varphi$ such that

$$
\begin{align*}
& \frac{\partial \varphi\left(x_{2}, x_{3}, t\right)}{\partial x_{2}}=\frac{\partial \psi\left(x_{2}, x_{3}, t\right)}{\partial x_{3}}=v_{2}\left(x_{2}, x_{3}, t\right) \tag{7}\\
& \frac{\partial \varphi\left(x_{2}, x_{3}, t\right)}{\partial x_{3}}=-\frac{\partial \psi\left(x_{2}, x_{3}, t\right)}{\partial x_{2}}=v_{3}\left(x_{2}, x_{3}, t\right)
\end{align*}
$$

The pressure is given by the formula

$$
\begin{equation*}
p\left(x_{2}, x_{3}, t\right)=\rho^{f}\left[\frac{v_{\infty}^{2}}{2}+\frac{p_{\infty}}{\rho^{f}}+\frac{\partial \varphi_{\infty}}{\partial t}-\frac{\partial \varphi}{\partial t}-\frac{1}{2}\left(v_{2}^{2}+v_{3}^{2}\right)\right] . \tag{8}
\end{equation*}
$$

In case under consideration $w\left(x_{2}, t\right)$ is given by the equation [4]

$$
\begin{equation*}
\left(h^{3}\left(x_{2}\right) w,_{22}\left(x_{2}, t\right)\right)_{22}=q\left(x_{2}, t\right)-2 \rho^{s} h\left(x_{2}\right) \frac{\partial^{2} w\left(x_{2}, t\right)}{\partial t^{2}}, \quad 0<x_{2}<l \tag{9}
\end{equation*}
$$

where ρ^{s} is a density of the plate.
Taking into account transmission condition (6), we have

$$
\left(x_{2}^{\alpha}\left(l-x_{2}\right)^{\beta} w_{, 22}\left(x_{2}, t\right)\right),{ }_{22}=-\frac{2 h\left(x_{2}\right) \rho^{s}}{h_{0}^{3}} w_{, t t}\left(x_{2}, t\right)+
$$

$$
+\frac{p\left(x_{2}, \stackrel{(-)}{h}\left(x_{2}\right), t\right) \cos \left(\vec{n}\left(x_{2}, \stackrel{(-)}{h}\left(x_{2}\right)\right), x_{3}\right)+p\left(x_{2}, \stackrel{(+)}{h}\left(x_{2}\right), t\right) \cos \left(\vec{n}\left(x_{2}, \stackrel{(+)}{h}\left(x_{2}\right)\right), x_{3}\right)}{h_{0}^{3}} .
$$

For $\Phi,_{2}\left(x_{2}, x_{3}, t\right)=-v_{3}+i v_{2}$, in view of (7), (4) and (3), we get the following expression (see [5])

$$
\begin{gather*}
\Phi_{,_{2}}=-\frac{1}{\pi i \sqrt{\left(x_{2}+i x_{3}\right)\left(x_{2}+i x_{3}-l\right)}} \int_{0}^{l} \frac{\sqrt{\left(\xi_{2}+i x_{3}\right)\left(\xi_{2}+i x_{3}-l\right)}}{\left(\xi_{2}-x_{2}\right)-i x_{3}} w_{, t}\left(\xi_{2}, t\right) d \xi_{2} \\
+v_{3 \infty}(t) \frac{x_{2}+i x_{3}-l / 2}{\sqrt{\left(x_{2}+i x_{3}\right)\left(x_{2}+i x_{3}-l\right)}} . \tag{10}
\end{gather*}
$$

From (10), we have expressions for v_{2} and v_{3} as follows

$$
\begin{aligned}
& v_{2}\left(x_{2}, x_{3}, t\right)=-\frac{1}{\pi} \int_{0}^{l} R_{1}\left(\xi, x_{2}, x_{3}\right) w, t(\xi, t) d \xi+v_{3 \infty}(t) R_{3}\left(x_{2}, x_{3}\right) \\
& v_{3}\left(x_{2}, x_{3}, t\right)=\frac{1}{\pi} \int_{0}^{l} R_{2}\left(\xi, x_{2}, x_{3}\right) w, t(\xi, t) d \xi+v_{3 \infty}(t) R_{4}\left(x_{2}, x_{3}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& R_{1}\left(\xi, x_{2}, x_{3}\right)=\frac{\sqrt{r\left(\xi, x_{3}\right)}}{\sqrt{r\left(x_{2}, x_{3}\right)}} \\
& \times \frac{\left(x_{2}-\xi\right) \cos \left[\left(\phi\left(\xi, x_{3}\right)-\phi\left(x_{2}, x_{3}\right)\right) / 2\right]+x_{3} \sin \left[\left(\phi\left(\xi, x_{3}\right)-\phi\left(x_{2}, x_{3}\right)\right) / 2\right]}{\left(\xi-x_{2}\right)^{2}+x_{3}^{2}} \\
& R_{2}\left(\xi, x_{2}, x_{3}\right)=\frac{\sqrt{r\left(\xi, x_{3}\right)}}{\sqrt{r\left(x_{2}, x_{3}\right)}} \\
& \times \frac{\left(x_{2}-\xi\right) \sin \left[\left(\phi\left(\xi, x_{3}\right)-\phi\left(x_{2}, x_{3}\right)\right) / 2\right]+x_{3} \cos \left[\left(\phi\left(\xi, x_{3}\right)-\phi\left(x_{2}, x_{3}\right)\right) / 2\right]}{\left(\xi-x_{2}\right)^{2}+x_{3}^{2}}, \\
& R_{4}\left(x_{2}, x_{3}\right)=\left\{\left(x_{2}-l / 2\right) \cos \frac{\phi\left(x_{2}, x_{3}\right)}{2}+x_{3} \sin \frac{\phi\left(x_{2}, x_{3}\right)}{2}\right\} \frac{1}{\sqrt{r\left(x_{2}, x_{3}\right)}} \\
& R_{3}\left(x_{2}, x_{3}\right)=\left\{\left(x_{2}-l / 2\right) \sin \frac{\phi\left(x_{2}, x_{3}\right)}{2}+x_{3} \cos \frac{\phi\left(x_{2}, x_{3}\right)}{2}\right\} \frac{1}{\sqrt{r\left(x_{2}, x_{3}\right)}}
\end{aligned}
$$

here $\phi\left(x_{2}, x_{3}\right)$ is defined by either

$$
\cos \phi\left(x_{2}, x_{3}\right)=\left(x_{2}^{2}-x_{3}^{2}-l x_{2}\right) / r\left(x_{2}, x_{3}\right)
$$

or

$$
\sin \phi\left(x_{2}, x_{3}\right)=\left(2 x_{2}-l\right) x_{3} / r\left(x_{2}, x_{3}\right)
$$

and

$$
r\left(x_{2}, x_{3}\right)=\sqrt{\left(x_{2}^{2}-x_{3}^{2}-l x_{2}\right)^{2}+\left(\left(2 x_{2}-l\right) x_{3}\right)^{2}}
$$

By means of the latter, in view of (7), we can calculate φ which we have to substitute in (8)

$$
\begin{aligned}
p\left(x_{2}, x_{3}, t\right) & =\frac{\rho^{f}}{\pi} \int_{0}^{l} w, t t(\xi, t) \int_{0}^{x_{3}} R_{2}\left(\xi, x_{2}, x_{3}\right) d x_{3} d \xi+v_{3 \infty}(t) \rho^{f} \int_{0}^{x_{3}} R_{4}\left(x_{2}, x_{3}\right) d x_{3} \\
& +\rho^{f}\left[\frac{v_{\infty}^{2}(t)}{2}+\frac{p_{\infty}(t)}{\rho^{f}}+\frac{\partial \varphi_{\infty}(t)}{\partial t}\right] \\
& -\frac{\rho^{f}}{2}\left\{\left(\frac{1}{\pi} \int_{0}^{l} R_{1}\left(\xi, x_{2}, x_{3}\right) w_{, t}(\xi, t) d \xi+v_{3 \infty}(t) R_{3}\left(x_{2}, x_{3}\right)\right)^{2}\right. \\
& \left.+\left(\frac{1}{\pi} \int_{0}^{l} R_{2}\left(\xi, x_{2}, x_{3}\right) w, t(\xi, t) d \xi+v_{3 \infty}(t) R_{4}\left(x_{2}, x_{3}\right)\right)^{2}\right\}
\end{aligned}
$$

Let

$$
\begin{gather*}
w\left(x_{2}, t\right)=e^{i \omega t} w_{0}\left(x_{2}\right), q\left(x_{2}, t\right)=e^{i \omega t} q_{0}\left(x_{2}\right), \tag{11}\\
p\left(x_{2}, x_{3}, t\right)=e^{i \omega t} p_{0}\left(x_{2}, x_{3}\right) \\
u_{2}\left(x_{2}, x_{3}, t\right)=e^{i \omega t} u_{2}^{0}\left(x_{2}, x_{3}\right), u_{3}\left(x_{2}, x_{3}, t\right)=e^{i \omega t} u_{3}^{0}\left(x_{2}, x_{3}\right), \tag{12}
\end{gather*}
$$

where $\omega=$ const $>0, v_{2}=u_{2, t}\left(v_{3}=u_{3, t}\right)$. Further,

$$
\begin{gathered}
\varphi\left(x_{2}, x_{3}, t\right)=i e^{i \omega t} \varphi_{0}\left(x_{2}, x_{3}\right), \quad \psi\left(x_{2}, x_{3}, t\right)=i e^{i \omega t} \psi_{0}\left(x_{2}, x_{3}\right), \\
v_{2}\left(x_{2}, x_{3}, t\right)=i e^{i \omega t} v_{2}^{0}\left(x_{2}, x_{3}\right), \quad v_{3}\left(x_{2}, x_{3}, t\right)=i e^{i \omega t} v_{3}^{0}\left(x_{2}, x_{3}\right), \\
p_{\infty}(t)=e^{i \omega t} p_{\infty}^{0}, \quad v_{3 \infty}(t)=i e^{i \omega t} v_{3 \infty}^{0}, \quad p_{\infty}^{0}, v_{3 \infty}^{0}=\mathrm{const}
\end{gathered}
$$

Then substituting the obtained expression of $p\left(x_{2}, x_{3}, t\right)$ in (6), by virtue of (11) and (12) we get the following expression for $q_{0}\left(x_{2}\right)$

$$
\begin{aligned}
q_{0}\left(x_{2}\right)= & \frac{\omega^{2} \rho^{f}}{\pi} \int_{0}^{l} w_{0}(\xi) \int_{0}^{\stackrel{(-)}{h}\left(x_{2}\right)} R_{1}\left(\xi, x_{2}, x_{3}\right) \cdot \cos \left(\vec{n}\left(x_{2}, \stackrel{(-)}{h}\left(x_{2}\right)\right), x_{3}\right) d x_{3} d \xi \\
& +\int_{0}^{l} w_{0}(\xi) \int_{0}^{\stackrel{(+)}{h}\left(x_{2}\right)} R_{1}\left(\xi, x_{2}, x_{3}\right) \cdot \cos \left(\vec{n}\left(x_{2} \stackrel{(+)}{h}\left(x_{2}\right)\right), x_{3}\right) d x_{3} d \xi
\end{aligned}
$$

$$
\begin{align*}
& -v_{3 \infty}^{0} \omega^{2} \rho^{f}\left\{\int_{0}^{\stackrel{(-)}{h}\left(x_{2}\right)} R_{2}\left(x_{2}, x_{3}\right) \cdot \cos \left(\vec{n}\left(x_{2}, \stackrel{(-)}{h}\left(x_{2}\right)\right), x_{3}\right) d x_{3}\right. \\
& \left.+\int_{0}^{\stackrel{(-)}{h}\left(x_{2}\right)} R_{2}\left(x_{2}, x_{3}\right) \cdot \cos \left(\vec{n}\left(x_{2}, \stackrel{(-)}{h}\left(x_{2}\right)\right), x_{3}\right) d x_{3}\right\} \tag{13}
\end{align*}
$$

Taking into account (11), (12), from (9) after four times integration with respect to x_{2} we get the following relation

$$
\begin{align*}
w_{0}\left(x_{2}\right) & -2 \rho^{s} \omega^{2} \int_{x_{2}^{0}}^{x_{2}} h(\xi) K\left(x_{2}, \xi\right) w_{0}(\xi) d \xi=\int_{x_{2}^{0}}^{x_{2}}\left(c_{1} \xi+c_{2}\right)\left(x_{2}-\xi\right) D^{-1}(\xi) d \xi \\
& +c_{3} x_{2}+c_{4}+\int_{x_{2}^{0}}^{x_{2}} K\left(x_{2}, \xi\right) q_{0}(\xi) d \xi \tag{14}
\end{align*}
$$

where

$$
\left.x_{2}^{0} \in\right] 0, l\left[, \quad K\left(x_{2}, \xi\right)=-\int_{\xi}^{x_{2}}\left(x_{2}-\eta\right)(\xi-\eta) D^{-1}(\eta) d \eta\right.
$$

Constants $c_{i}(i=1, \ldots, 4)$ should be defined from the admissible boundary value conditions [4]

Problem 1. Let $\alpha<1, \beta<1$. Find $w \in C^{4}(] 0, l[) \cap C^{1}([0, l])$ satisfying (9) and the following boundary conditions (BCs):

$$
w_{0}(0)=g_{11}, \quad w_{0,2}(0)=g_{21}, \quad w_{0}(l)=g_{12}, \quad w_{0,2}(l)=g_{22}
$$

Problem 2. Let $\alpha<1, \beta<1$. Find $w \in C^{4}(] 0, l[) \cap C^{1}([0, l])$ satisfying (9) and BCs:

$$
w_{0}(0)=g_{11}, \quad w_{0,2}(0)=g_{21} \quad w_{0,2}(l)=g_{22} \quad Q_{2}(l)=h_{22} ;
$$

Problem 3. Let $0 \leq \alpha<1, \quad 0 \leq \beta<2$. Find $w \in C^{4}(] 0, l[) \cap C^{1}([0, l[) \cap C([0, l])$ satisfying (9) and BCs:

$$
w_{0}(0)=g_{11}, \quad w_{0,2}(0)=g_{21}, \quad w_{0}(l)=g_{12}, \quad M_{2}(l)=h_{12}
$$

Problem 4. Let $0 \leq \alpha<1, \beta \geq 0$. Find $w \in C^{4}(] 0, l[) \cap C^{1}([0, l[)$ satisfying (9) and the following BCs:

$$
w_{0}(0)=g_{11}, \quad w_{0,2}(0)=g_{21} \quad M_{2}(l)=h_{12}, \quad Q_{2}(l)=h_{22}
$$

Problem 5. Let $0 \leq \alpha, \beta<1$. Find $w \in C^{4}(] 0, l[) \cap C^{1}([0, l])$ satisfying (9) and the following BCs:

$$
w_{0,2}(0)=g_{21} \quad Q_{2}(0)=h_{21}, \quad w_{0}(l)=g_{12}, \quad w_{0,2}(l)=g_{22}
$$

Problem 6. Let $0 \leq \alpha<1,0 \leq \beta<2$. Find $w \in C^{4}(] 0, l[) \cap C^{1}([0, l[) \cap C([0, l])$ satisfying (9) and the following BCs:

$$
w_{0,2}(0)=g_{21}, \quad Q_{2}(0)=h_{21}, \quad w_{0}(l)=g_{12}, \quad M_{2}(l)=h_{12}
$$

Problem 7. Let $0 \leq \alpha<2, \quad 0 \leq \beta<1$. Find $\left.\left.w \in C^{4}(] 0, l[) \cap C^{1}(] 0, l\right]\right) \cap C([0, l])$ satisfying (9) and the following BCs:

$$
w_{0}(0)=g_{11}, \quad M_{2}(0)=h_{11}, \quad w_{0}(l)=g_{12}, \quad w_{0,2}(l)=g_{22} ;
$$

Problem 8. Let $0 \leq \alpha<2,0 \leq \beta<1$. Find $\left.\left.w \in C^{4}(] 0, l[) \cap C([0, l]) \cap C^{1}(] 0, l\right]\right)$ satisfying (9) and the following BCs:

$$
\begin{equation*}
w_{0}(0)=g_{11}, \quad M_{2}(0)=h_{11}, \quad w_{0,2}(l)=g_{22}, \quad Q_{2}(l)=h_{22} \tag{15}
\end{equation*}
$$

Problem 9. Let $0 \leq \alpha, \beta<2$. Find $w \in C^{4}(] 0, l[) \cap C([0, l])$ satisfying (9) and the following BCs:

$$
w_{0}(0)=g_{11}, \quad M_{2}(0)=h_{11} \quad w_{0}(l)=g_{12}, \quad M_{2}(l)=h_{12}
$$

Problem 10. Let $\alpha \geq 0, \quad 0 \leq \beta<1$. Find $\left.\left.w \in C^{4}(] 0, l[) \cap C^{1}(] 0, l\right]\right)$ satisfying (9) and the following BCs:

$$
M_{2}(0)=h_{11}, \quad Q_{2}(0)=h_{22} \quad w_{0}(l)=g_{12}, \quad w_{0,2}(l)=g_{22} .
$$

In all these problems $g_{i, j}, h_{i j}(i, j=1,2)$ are given constants. By $M_{2}\left(x_{2}\right)$ and $Q_{2}\left(x_{2}\right)$ are denote bending moment and intersecting force

$$
M_{2}\left(x_{2}\right):=-h^{3}\left(x_{2}\right) w_{0,22}\left(x_{2}\right), \quad Q_{2}\left(x_{2}\right):=M_{2,2}\left(x_{2}\right)
$$

Let consider, e.g., boundary conditions (15). Then for $w_{0}\left(x_{2}\right)$ we get the following equation [6]

$$
\begin{align*}
w_{0}\left(x_{2}\right) & -\omega^{2} \int_{0}^{l} K_{1}\left(x_{2}, \xi\right) w_{0}(\xi) d \xi \\
& -2 \rho^{s} \omega^{2}\left\{\int_{x_{2}^{0}}^{x_{2}} h(\xi) K\left(x_{2}, \xi\right) w_{0}(\xi) d \xi+\int_{x_{2}^{0}}^{l} h(\xi) K_{l}\left(x_{2}, \xi\right) w_{0}(\xi) d \xi\right. \tag{16}\\
& \left.+\int_{0}^{x_{2}^{0}} h(\xi) K_{0}\left(x_{2}, \xi\right) w_{0}(\xi) d \xi\right\} \\
& =f\left(x_{2}\right)
\end{align*}
$$

where

$$
\begin{aligned}
& K_{0}\left(x_{2}, \xi\right)=\xi\left\{\int_{l}^{x_{2}} x_{2} D^{-1}(\eta) d \eta-\int_{0}^{x_{2}} \eta D^{-1}(\eta) d \eta\right\}-K(0, \xi), \\
& K_{l}\left(x_{2}, \xi\right)=x_{2} \int_{l}^{x_{2}} \eta D^{-1}(\eta) d \eta-\int_{0}^{x_{2}} \eta^{2} D^{-1}(\eta) d \eta+x_{2} \int_{\xi}^{l}(\eta-\xi) D^{-1}(\eta) d \eta, \\
& K_{1}\left(x_{2}, \xi\right)=\frac{\rho^{f}}{\pi}\left\{\int_{x_{2}^{0}}^{l} K_{l}\left(x_{2}, \zeta\right) \int_{0}^{\stackrel{(-)}{h}(\zeta)} R_{1}\left(\xi, \zeta, x_{3}\right) \cdot \cos \left(\vec{n}(\zeta, \stackrel{(-)}{h}(\zeta)), x_{3}\right) d x_{3} d \zeta\right. \\
& +\int_{x_{2}^{0}}^{l} K_{l}\left(x_{2}, \zeta\right) \int_{0}^{\stackrel{(+)}{h}(\zeta)} R_{1}\left(\xi, \zeta, x_{3}\right) \cdot \cos \left(\vec{n}(\zeta, \stackrel{(+)}{h}(\zeta)), x_{3}\right) d x_{3} d \zeta \\
& +\int_{x_{2}^{0}}^{0} K_{0}\left(x_{2}, \zeta\right) \int_{0}^{\stackrel{(-)}{h(\zeta)}} R_{1}\left(\xi, \zeta, x_{3}\right) \cdot \cos \left(\vec{n}(\zeta, \stackrel{(-)}{h}(\zeta)), x_{3}\right) d x_{3} d \zeta \\
& +\int_{x_{2}^{0}}^{0} K_{0}\left(x_{2}, \zeta\right) \int_{0}^{\stackrel{(+)}{h}(\zeta)} R_{1}\left(\xi, \zeta, x_{3}\right) \cdot \cos \left(\vec{n}(\zeta, \stackrel{(+)}{h}(\zeta)), x_{3}\right) d x_{3} d \zeta \\
& +\int_{x_{2}^{0}}^{x_{2}} K\left(x_{2}, \zeta\right) \int_{0}^{\stackrel{(-)}{h}(\zeta)} R_{1}\left(\xi, \zeta, x_{3}\right) \cdot \cos \left(\vec{n}(\zeta, \stackrel{(-)}{h}(\zeta)), x_{3}\right) d x_{3} d \zeta \\
& +\int_{x_{2}^{0}}^{x_{2}} K\left(x_{2}, \zeta\right) \int_{0}^{\stackrel{(+)}{h}(\zeta)} R_{1}\left(\xi, \zeta, x_{3}\right) \cdot \cos \left(\vec{n}(\zeta, \stackrel{(+)}{h}(\zeta)), x_{3}\right) d x_{3} d \zeta, \\
& f\left(x_{2}\right)=x_{2}\left(g_{22}+h_{22} \int_{x_{2}^{0}}^{l} \xi D^{-1}(\xi) d \xi+h_{11} \int_{x_{2}^{0}}^{l} D^{-1}(\xi) d \xi\right)+g_{11}+h_{22} \int_{0}^{x_{2}^{0}} \xi^{2} D^{-1}(\xi) d \xi \\
& -h_{11} \int_{0}^{x_{2}^{0}} \xi D^{-1}(\xi) d \xi-\int_{x_{2}^{0}}^{x_{2}}\left(h_{22} \xi+h_{11}\right)\left(x_{2}-\xi\right) D^{-1}(\xi) d \xi
\end{aligned}
$$

$$
\begin{aligned}
& -\omega^{2} \rho^{f} v_{3}^{0} \varphi\left\{\int _ { x _ { 2 } ^ { 0 } } ^ { l } K _ { l } (x _ { 2 } , \xi) \quad \left[\int_{0}^{\stackrel{(-)}{h}(\xi)} R_{3}\left(\xi, x_{3}\right) \cdot \cos \left(\vec{n}(\xi, \stackrel{(-)}{h}(\xi)), x_{3}\right) d x_{0}\right.\right. \\
& \left.+\int_{0}^{\stackrel{(+)}{h}(\xi)} R_{3}\left(\xi, x_{3}\right) \cdot \cos \left(\vec{n}(\xi, \stackrel{(+)}{h}(\xi)), x_{3}\right) d x_{3}\right] d \xi \\
& -\int_{x_{2}^{0}}^{0} K_{0}\left(x_{2}, \xi\right) \quad\left[\int_{0}^{(-)}{ }^{(\xi)} R_{3}\left(\xi, x_{3}\right) \cdot \cos \left(\vec{n}(\xi, \stackrel{(-)}{h}(\xi)), x_{3}\right) d x_{3}\right. \\
& \left.+\int_{0}^{\stackrel{(+)}{h}(\xi)} R_{3}\left(\xi, x_{3}\right) \cdot \cos \left(\vec{n}(\xi, \stackrel{(+)}{h}(\xi)), x_{3}\right) d x_{3}\right] d \xi \\
& -\int_{x_{2}^{0}}^{x_{2}} K\left(x_{2}, \xi\right) \quad\left[\int_{0}^{(-)}{ }^{(\xi)} R_{3}\left(\xi, x_{3}\right) \cdot \cos \left(\vec{n}(\xi, \stackrel{(-)}{h}(\xi)), x_{3}\right) d x_{3}\right. \\
& \left.\left.+\int_{0}^{\stackrel{(+)}{h}(\xi)} R_{3}\left(\xi, x_{3}\right) \cdot \cos \left(\vec{n}(\xi, \stackrel{(+)}{h}(\xi)), x_{3}\right) d x_{3}\right] d \xi\right\} .
\end{aligned}
$$

It is easy to show that $2 \rho^{s} h(\xi) K\left(x_{2}, \xi\right), 2 \rho^{s} h(\xi) K_{0}\left(x_{2}, \xi\right), 2 \rho^{s} h(\xi) K_{l}\left(x_{2}, \xi\right), K_{1}\left(x_{2}, \xi\right) \in$ $\in C([0, l])$ (in our case $0 \leq \alpha<2,0 \leq \beta<1$).

The integral equation (16) can be solved by method of successive approximations.
Remark. In case of the other above boundary conditions (see problems 1-7, 9, 10), the problem under consideration is solved analogously and in all cases we get (16) type integral equations.

Thus, the following Preposition is valid.
Proposition Problem of the harmonic vibration of the plate with two cusped edges under action of the incompressible ideal fluid (i.e., equations (7), (8), (9), under transmission conditions (4), (6) and under conditions at infinity (2), (3) and BCs have) has a unique solution when

$$
\omega^{2}<\frac{1}{M l},
$$

where

$$
\begin{aligned}
M:=\max _{x_{2}, \xi \in[0, l]} & \left\{\left|2 \rho^{s} h(\xi) K\left(x_{2}, \xi\right)\right|,\left|2 \rho^{s} h(\xi) K_{0}\left(x_{2}, \xi\right)\right|,\right. \\
& \left.\left|2 \rho^{s} h(\xi) K_{l}\left(x_{2}, \xi\right)\right|,\left|K_{1}\left(x_{2}, \xi\right)\right|\right\} .
\end{aligned}
$$

REFERENCES

1. Loitsianskii L., Mechanics of Fluid and Gas. Moscow, 1960 (in Russian).
2. Wol'mir, A., Shells on the Flow Fluid and Gas. Problems of Hydro-elasticity, Moscow, 1981, (in Russian).
3. Solonikov V.A., On Quasistationary Approximation in the Problem of Motion of a Capillary Drop. Preprint 7/98, Pré-publicaçǒes de Matemática, Universidade de Lisboa, 1998.
4. Chinchaladze N., Vibration of the Plate with Two Cusped Edges. Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy, vol. 52 (2002),30-48
5. Muskhelishvili N. Singular Integral Equations. Noordhoff, 1953.
6. Chinchaladze, N., Jaiani, G., On a Cusped Elastic Solid-Fluid Interaction Problem. Applied Mathematics and Informatics, vol. 6, No. 2 (2001), 25-64.
