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This paper deals with the analysis of the physical (mechanical) sense of the quan-
tities considered in the theory of cusped plates [1] and beams [2]. The relation of
boundary value problems of the three-dimensional model of elasticity to boundary
value problems of two- and one-dimensional models is also discussed.

1. Physical and Mathematical Moments of Stresses

Let Xij, i, j = 1, 2, 3, be stress tensor. The k-th order mathematical moment of

Xij ∈ C(Ω ∪
(+)

h ∪
(−)

h ) is defined as follows (see [3]):

k

Xij(x1, x2) :=

(+)

h (x1,x2)∫

(−)

h (x1,x2)

Xij(x1, x2, x3)Pk(ax3 − b)dx3, (x1, x2) ∈ ω,

(x1, x2, x3) ∈ Ω,

(1)

where

Pk(t) :=

[ k
2 ]∑

l=0

(−1)l (2k − 2l)!

2kl!(k − l)!(k − 2l)!
tk−2l, k = 0, 1, ..., (2)

are Legendre polynomials (see [4], Section 15.1),
[

k
2

]
is an integer part of k

2
, Ω is a

domain occupied by a plate of the variable thickness, ω is its projection on the plane
x3 = 0,

(±)

h := {(x1, x2, x3) ∈ R3 : (x1, x2) ∈ ω, x3 =
(±)

h (x1, x2)}
are the upper and lower face surfaces of the plate,

a :=
1

h
, b :=

h̃

h
,

2h(x1, x2) :=
(+)

h (x1, x2)−
(−)

h (x1, x2),

2h̃(x1, x2) :=
(+)

h (x1, x2) +
(−)

h (x1, x2).
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Physical moments are defined as follows:

Sij(x1, x2) :=
0

Mij(x1, x2), i, j = 1, 2, 3,

k

Mij(x1, x2) :=

(+)

h (x1,x2)∫

(−)

h (x1,x2)

Xij(x1, x2, x3)x
k
3dx3, k = 0, 1, ..., i, j = 1, 2, 3, (3)

where, S23, S13 are so called intersecting forces, Sαβ, α, β = 1, 2 are so called membrane

(or normal and tangent) forces,
1

M11,
1

M22 are bending moments,
1

M12 is a twisting mo-

ment. In what follows, generalizing these definitions,
k

Mij(x1, x2) will be called physical
moments of the k-th order. In particular, as it was just mentioned, zero moments co-
incide with the intersecting and membrane forces; the first moments coincide with the
bending and twisting moments and the splitting couple of forces (for the last notion
see [3]).

Evidently, (1) and (3) have the sence for 2h > 0.

If a point P ∈ Γ := ∂Ω\(
(+)

h ∪
(−)

h ) belongs to the cusped edge Γ0⊂̄Γ of the plate,
i.e., 2h(Pω) = 0, Pω ∈ γ0, then the mathematical and physical moments we define as
the following limits:

k

Xij(P ) :=
k

Xij(Pω) := lim
ω3Qω→Pω

k

Xij(Qω), i, j = 1, 2, 3,

k

Mij(P ) :=
k

Mij(Pω) := lim
ω3Qω→Pω

k

Mij(Qω), i, j = 1, 2, 3, (4)

where γ0 is a projection of Γ0 on the plane x3 = 0, and Pω and Qω are the projections
of P ∈ Γ and Q ∈ Ω, respectively. When the cusped edge lies on ∂ω, then obviously
Pω ≡ P . For the sake of simplicity in what follows we suppose Pω ≡ P unless otherwise
stated (in this connection see Figures 1-3, where plane sections of the plate parallel to
the plane x1 = 0 are given).

If Xij are bounded on Ω functions, then if P ∈ Γ0, obviously,
k

Xij(Pω) = 0 and
k

Mij(Pω) = 0. Evidently,
k

Xij(Pω) 6= 0 and
k

Mij(Pω) 6= 0 only if lim
Ω3Q→P∈Γ0

Xij(Q) = ∞.

If, e.g., the cusped edge belongs to the axis x1 and in some neighborhood along

∂ω (i.e., axis 0x1) of the point P where 2h = 0, then
0

M2j(P )dx1, j = 1, 2, 3, are the

components of a concentrated along linear element dx1 force and
0

M2j(P ), j = 1, 2, 3
are the components of a concentrated along unit of ∂ω force applied at P (see Fig
4). When the cusped edge is a smooth element ds of the line ∂ω with a normal n

at the point P , then
0

Mnj(P )ds =
0

Mij(P )ni(P )ds, j = 1, 2, 3, are the components

of a concentrated along the line element ds force. Similarly,
1

Mnj(P ) and
1

Mnj(P )ds,



42 Jaiani G.

j = 1, 2, 3 are the components of a concentrated along the line moment at the point P
and along the element ds, respectively. We recall that Xij(P ) = ∞ in the case when

either
k

Xij or
k

Mij are not zero at P (see Fig. 4).

Let, in general, P 6= Pω. Let further some neighborhoods of the point P along
∂ω and on the upper and lower surfaces are not loaded by the concentrated forces
and moments along ∂ω and surface forces, respectively. Besides of forces and physical
moments concentraded along lines we can define also concentraded at the point P of
the cusped edge of the plate forces and physical moments as follows (see Fig. 5)

k

Fi(P ) := lim
ρ→0

∫

S

Xni(Q)xk
3dS = lim

ρ→0

∫

S

Xni(Qω, x3)x
k
3dS

= lim
ρ→0

∫

Sω

dSω

(+)

h (x1,x2)∫

(−)

h (x1,x2)

Xni(Qω, x3)x
k
3dx3 = lim

ρω→0

∫

Sω

k

Mni(Qω)dSω =
k

Fi(Pω),

where S is a cylindrical surface parallel to x3, Sω is its projection on the plane x3 = 0;
ρ is maximum of the distances between P and Q ∈ S and ρω is maximum of of the
distances between Pω and Qω ∈ Sω.

By virtue of (2), we have

Pk(ax3 − b) = Pk

(
x3 − h̃

h

)
=

1

2k

[ k
2 ]∑

l=0

(−1)l 1

l!(k − l)!

(2k − 2l)!

(k − 2l)!
(x3 − h̃)k−2lh2l−k

=
1

2k

[ k
2 ]∑

l=0

k−2l∑
r=0

(−1)l+r 1

l!(k − l)!

(2k − 2l)!

(k − 2l)!

(k − 2l)!

r!(k − 2l − r)!
xk−2l−r

3 h̃rh2l−k

=
1

2k

[ k
2 ]∑

l=0

k−2l∑
r=0

(−1)l+r (2k − 2l)!

l!(k − l)!r!(k − 2l − r)!
xk−2l−r

3 h̃rh2l−k

=
(2k)!

2k(k!)2
· xk

3

hk
+

1

2k





[ k
2 ]∑

l=1

k−2l∑
r=0

+
k∑

r=1
l=0





(−1)l+r

× (2k − 2l)!

l!(k − l)!r!(k − 2l − r)!
xk−2l−r

3 h̃rh2l−k,

0∑

l=1

(·) = 0,

(5)
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since

[ k
2 ]∑

l=0

k−2l∑
r=0

clr =
k∑

r=0

c0r +

[ k
2 ]∑

l=1

k−2l∑
r=0

clr = c00 +
k∑

r=1

c0r +

[ k
2 ]∑

l=1

k−2l∑
r=0

clr = c00

+





[ k
2 ]∑

l=1

k−2l∑
r=0

+
k∑

r=1
l=0





clr.

Hence,

xk
3 =

2k(k!)2

(2k)!
hkP k(ax3 − b)− (k!)2

(2k)!





[ k
2 ]∑

l=1

k−2l∑
r=0

+
k∑

r=1
l=0





(−1)l+r

× (2k − 2l)!

l!(k − l)!r!(k − 2l − r)!
h̃rh2lxk−2l−r

3 .

(6)

From (1), (6), (3) we get

k

Mij(x1, x2) =

(+)

h∫

(−)

h

xk
3Xij(x1, x2, x3)dx3 =

2k(k!)2

(2k)!
hk

k

Xij(x1, x2)

− (k!)2

(2k)!





[ k
2 ]∑

l=1

k−2l∑
r=0

+
k∑

r=1
l=0





(−1)l+r (2k − 2l)!

l!(k − l)!r!(k − 2l − r)!

×h̃rh2l
k−2l−r

Mij (x1, x2), k = 0, 1, 2, · · ·.

(7)

Which gives the recurence formulae for calculating of
k

Xij by means of
s

Mij, s =

= 0, 1, ..., k, and of
k

Mij by means of
s

Xij, s = 0, 1, ..., k.
Therefore, for k = 0, 1,

Sij(x1, x2) :=
0

Mij(x1, x2) =
0

Xij(x1, x2), (8)

1

Mij(x1, x2) = h
1

Xij(x1, x2) + h̃Sij(x1, x2), (9)

respectively.
Now, tending Qω to P = Pω, from (8), (9), and (7) for k ≥ 2 we obtain

Sij(P ) =
0

Xij(P ), (10)

1

Mij(P ) = lim
ω3Qω→P

h(Qω)
1

Xij(Qω), (11)
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and
k

Mij(P ) =
2k(k!)2

(2k)!
lim

ω3Qω→P
hk(Qω)

k

Xij(Qω), (12)

because of

lim
ω3Qω→P

h̃rh2l
k−2l−r

Mij (Qω) = 0

since r + l > 0 in sums of (7), and

h(P ) = 0, h̃(P ) = 0.

Taking into accaunt (10), (11), we conclude that (12) is valid for k ≥ 0.
In the case P 6= Pω (see Fig.1), in view of (4), (7), we have

k

Mij(P ) :=
k

Mij(Pω) =
2k(k!)2

(2k)!
lim

ω3Qω→Pω

hk(Qω)
k

Xij(Qω)

−k!
k∑

r=1
l=0

(−1)r 1

(k − r)!r!
h̃r(Pω)

k−r

Mij(Pω).

Thus, when we consider boundary conditions in stresses, i.e., forces and moments
concentrated along the cusped edge are given, for mathematical moments at cusped
edges in the N -th approximation from (12) we get the following boundary conditions:

lim
ω3Qω→Pω

hk(Qω)
k

Xij(Qω), are prescribed for k = 0, N, (13)

which are weighted boundary conditions for k ≥ 1.
The homogeneous boundary conditions (13) for i = 2 at cusped edges belonging to

axis x1 of two-dimensional model correspond to the three-dimensional model, when on
the face surfaces the stresses and on the lateral non-cusped edge (boundary) Γ\Γ̄0 either
the displacements or the stresses are prescribed. In this case homogenoues boundary
conditions (13) are automatically satisfied for the bounded stresses or for ui ∈ H1(Ω)
since in the last case Xij ∈ L2(Ω) and by Fubini theorem the summability of Xij along

x3 in (1) can be shown. Therefore, lim
ω3Qω→P

k

Xij(Qω) = 0 since limits of integration in

(1) tend to 0. In the case of sharp cusped edges the homogeneous boundary conditions
(13) at cusped edges can be replaced by the boundednes in ω of weighted moments
of displacements (see below Section 2) or by belonging to some space on ω without
boundary conditions at cusped edge.

The nonhomogeneous boundary conditions (13) for i = 2 at cusped edges belonging
to axis x1 of two-dimensional model correspond to the three-dimensional model, when
at above-mentioned cusped edges Γ0 forces and physical moments concentrated along

the cusped edges are applied and on the other parts
(+)

h ,
(−)

h , Γ\Γ̄0 of the body boundary
the same conditions as in the above-formulated case of homogeneous boundary condi-
tions (13) are given.
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In the N -th approximation the stress tensor is given in the form

Xij(x1, x2, x3) ∼=
N∑

k=0

a

(
k +

1

2

)
k

Xij(x1, x2)Pk(ax3 − b), i, j = 1, 2, 3. (14)

In this case the relation (1) between Xij and
k

Xij is correct when the symbol of approx-
imate equality in (14) can be replaced by the exact equality symbol. This occurs if
either Xij are N -th order polynomials with respect to x3 or N = +∞ (i.e., we consider
the Fourier-Legendre series representation for

Xij(x1, x2, ·) ∈ C2

([
(+)

h (x1, x2),
(−)

h (x1, x2)

])
.

Obviously, surface forces Xni(x1, x2, x3) can be considered only at points of blunt
cusped edges (in this case the union of the upper and lower surfaces is a smooth surface
and there exist normals) and, as it follows from (14), they become infinite as Q → P
if boundary conditions (13) (see also (9)) are inhomogeneous.

Let us remark that the inhomogeneous boundary conditions (13), i.e., (12), mean
that along the cusped edge the concentrated along the edge forces and moments are
given (see Figures 6,7, where the plane sections of the three-dimensional problems are
given). Some such problems in two- and one-dimensional formulations are solved in
[5], [6], [2]. The similar analysis can be carried out for cusped beams.

2. Displacement Vector. Weighted Moments

The k-th order moments of the displacement vector components are defined similar
to (1):

k
ui(x1, x2) :=

(+)

h (x1,x2)∫

(−)

h (x1,x2)

ui(x1, x2, x3)Pk(ax3 − b)dx3, i = 1, 2, 3, k = 0, 1, 2, · · ·

In the N -th approximation, by virtue of (5), ui are expressed by
k
ui as follows:

ui(x1, x2, x3) ∼=
N∑

k=0

a

(
k +

1

2

)
k
ui(x1, x2)Pk(ax3 − b)

=
N∑

k=0

(
k +

1

2

)
hk k

vi(x1, x2)Pk(ax3 − b)

=
N∑

k=0

1

2k

(
k +

1

2

) [ k
2 ]∑

l=0

k−2l∑
r=0

(−1)l+r (2k − 2l)!

l!(k − l)!r!(k − 2l − r)!

× k
vi(x1, x2)x

k−2l−r
3 h̃rh2l, i = 1, 2, 3,

(15)
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where

k
vi(x1, x2) :=

k
ui(x1, x2)

hk+1
, i = 1, 2, 3, ..., k = 0, N,

are weighted moments of the displacement vector components.

In particular, in the N = 0 and N = 1 approximations

u(x1, x2, x3) ∼= 1

2

0
vi(x1, x2), i = 1, 2, 3,

and

ui(x1, x2, x3) ∼= 1

2

0
vi(x1, x2) +

3

2

1
vi(x1, x2)(x3 − h̃), i = 1, 2, 3,

respectively.

Let
k
vi be bounded then for

k − 2l − r + r + 2l = k > 0

the limits in the right hand side of (15) are zero as Ω 3 Q → P = Pω, i.e., as
ω 3 Qω → Pω = P , there remains only the summend for k = 0, i.e.,

lim
ω3Q→P

ui(Q) =
1

2

0
vi(P ) if I0 :=

Q∫

P

dn

h
< +∞, (16)

where n is an inward normal to ∂ω at the point P , since for I0 = +∞ the lim
ω3Q→P

0
vi(Q),

in general, does not exist (see [1], [2], [7-9] and references therein).

This will be not the fact in case P 6= Pω (see Fig.1), since now x3 → x0
3 6= 0 as

Qω → Pω (when P ≡ Pω, evidently x0
3 = 0). Taking into account that (see [10] and

also Remark 3 below)

lim
ω3Qω→Pω

k
vi(Qω), k = 0, 1, ..., N,

there exist for
Qω∫

Pω

dn

h2k+1
< +∞, k = 0, 1, ..., N,

from (15) we conclude that

lim
ω3Q→P

ui(Q) =
N∑

k=0

1

2k

(
k +

1

2

) k∑
r=0

(−1)r (2k)!

k!r!(k − r)!

× k
vi(Pω)(x0

3)
k−rh̃r, i = 1, 2, 3, for

Qω∫

Pω

dn

h2N+1
< +∞.

(17)
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From (15), evidently,

∂jui(Q)

∂xj
3

=
N∑

k=j

1

2k

(
k +

1

2

) [ k−j
2 ]∑

l=0

k−2l−j∑
r=0

(−1)l+r (2k − 2l)!

l!(k − l)!(k − 2l − r)!r!

× k
vi(Qω)(k − 2l − r)(k − 2l − r − 1) · · · (k − 2l − r − j + 1)

×xk−2l−r−j
3 h̃rh2l, j = 1, 2, ..., N.

(18)

Whence,

lim
Ω3Q→P

∂jui(Q)

∂xj
3

=
N∑

k=j

1

2k

(
k +

1

2

) k∑
r=0

(−1)r (2k)!

k!r!(k − r)!

k
vi(Pω)

×(k − r)(k − r − 1) · · · (k − r − j + 1)(x0
3)

k−r−jh̃r

j = 1, 2, · · ·, N, i = 1, 2, 3, when

Qω∫

Pω

dn

h2N+1
< +∞.

(19)

In the case P ≡ Pω, by virtue of h̃(Pω) = 0 and x0
3 = 0, from (17), (19) we get

lim
Ω3Q→P

∂jui(Q)

∂xj
3

=
1

2j

(
j +

1

2

)
(2j)!

j!

j
vi(P ), (20)

j = 1, 2, · · ·, N, i = 1, 2, 3, when

Qω∫

Pω

dn

h2N+1
< +∞.

If additionally
k
vi are bounded, from (18) we get (20) under the corresponding

condition
Qω∫

P

dn

h2j+1
< +∞. (21)

Thus, from (20) we can define
j
vi, j = 0, 1, · · · , N, i = 1, 2, 3, provided the left-

hand sides of (20), i.e., derivatives with respect to x3 up to the N -th order of the

displasements ui at point P ∈ Γ0 are known. In the same way we can define
j
vi(Pω),

j = 0, 1, · · ·, N, i = 1, 2, 3, from equalities (19), (17) by means of their left-hand sides.
To this end we set in (19) sequently j = N , j = N − 1, ..., j = 1 and obtain the

values for
j
vi(Pω), using the results of the previous steps. Finally, we define

0
vi from

(17).
Remark 1. (20) when (21) holds signifies that boundary conditions of two-

dimensional models, when on γ0 ≡ Γ0

j
vi(P ) if

Qω∫

P

dn

h2j+1
< +∞, j = 0, 1, ..., N, i = 1, 2, 3, are prescribed,



48 Jaiani G.

correspond to the boundary conditions of the three-dimensional model, when on Γ0 ≡
≡ γ0

∂jui(P )

∂xj
3

, if

Qω∫

Pω

dn

h2j+1
< +∞, j = 0, 1, ..., N, i = 1, 2, 3, are prescribed.

Similarly, (17), (19) signify that boundary conditions of the two-dimensional models,
when on γ0

j
vi(Pω) if

Qω∫

Pω

dn

h2N+1
< +∞, j = 0, 1, ..., N, i = 1, 2, 3, are prescribed (22)

correspond to the boundary conditions of the three-dimensional model, when on Γ0

∂jui(P )

∂xj
3

if

Qω∫

Pω

dn

h2N+1
< +∞, j = 0, 1, ..., N, i = 1, 2, 3, are prescribed. (23)

Such boundary conditions fall outside the limits of the classicall three-dimensional the-
ory of elastisity. If N = +∞ (i.e.,we actually have three-dimensional model), then
Qω∫

Pω

dn

h2N+1
= +∞ and therefore, boundary conditions (22), (23) disappear like of classi-

cal three-dimensional model.
Remark 2. When

0
vi(P ) = 0 (see (16)) along the cusped edge (because of I0 < +∞

this cusped end is blunt one [1]), it means that in the corresponding three-dimensional
problem the cusped edge is fixed; on the face surfaces the stresses and on the lateral
non-cusped edge either the displacements or the stresses are prescribed (see Fig.8).

The physical sense of
0
vi(P ) 6= 0 is evident. Such formulation of the three-dimensional

boundary value problem is not usual and falls outside the limits of the classical three-
dimensional theory of elastisity.

Remark 3. If we considor admissible (i.e., correct) boundary value problems in
corresponding weighted Sobolev spaces, then generalizing known results [10], [7] (see
also [11] and references theirin and [12]) for the N -th approximation at a cusped edge
we will get the following boundary conditions in weighted moments of displacements
in the sence of traces [8]:

k
vi(P ) if

Qω∫
P

dn

h2k+l
< +∞, k = 0, 1, ..., N , i = 1, 2, 3, are given.

Whence, by virtue of (15), for displacements we obtain that there exist traces

ui(P ), i = 1, 2, 3, if

Qω∫

P

dn

h2N+1
< +∞.
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fig.1. fig.2

fig.3. fig.4

fig.5. fig.6
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fig.7. fig.8
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