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Environmental protection is one of the main problems of the population. At present
an investigation of this problem on the basis of mathematical modeling is widely used.
Since the transference equation which describes pollutants migration and diffusion ana-
lytically is integrated only in the some special cases, therefore for its solving numerical
methods are used. Imitational numerical models describing environmental pollution
mainly are distinguished by physical and chemical characteristics and types of the
sources ejecting harmful substances. With the purpose to reduce simulated problem
to the classical problem of the mathematical physics it is necessary to stylize of the
examine area and sources ejecting harmful substances.

For example to study pollutants migration and diffusion due to traffic in urban
streets exhaust gases can be represented as linear sources and streets can be assumed
as a box[1.2].As regard to wind velocity it is possible to consider it as stationary in the
limited time period [2]. Similar type of the problem we obtain when considering sewage
waters protection from pollution [3]. For instance the problem of the rivers pollution
from the drain-pipe in the urban areas. In this case it is possible to study pollutants
migration and diffusion in the rectangular parallelepiped with the free surface. It is
possible to suppose that velocity of flows is known and drain-pipes are represented as
single (linear) sources.

In this paper we discuss one unconditionally stable difference economical scheme to
solve the above mentioned environmental pollution problems.

Let us consider for the equation of parabolic type the following initial-boundary
value problem:
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where C is a concentration; u, v, w are the axial components of wind velocity along
axis Ox, Oy,Oz; k1 and k2 are the coefficients of turbulent diffusion; α is the coefficient
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that determines the velocity of substance concentration changes during the process of
substance decomposition and transformation; Q (x, y, z, t) are internal sources.

u = const1, v = const2, w = const3, namely const1 = 5; const2 = 2; const3 = 0.07.
k1 = 1, 2.103; k1 = 10; α = 0, 0001; Q = (0, 0, 2 + ∆z, t) = 0, 01.
(x, y, z, t) ∈ GT × [0, T ], (x, y, z) ∈ G,G ∈ G ∪ Γ,

G = [0 ≤ x ≤ a1, 0 ≤ y ≤ a1, 0 ≤ z ≤ b1] is a rectangular parallelepiped, Γ =
6⋃

i=1
Γi

is a border of parallelepiped G, and Γi- is a right border.
(a1 = 4000m; b1 = 2000m;)
The difference scheme for problem (1):
Let us use undimensional variables:
x = x1a1, y = y1a1, z = z1b1, t = t1

a2
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and rewrite the equation (1) equally in the following form:
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Let us consider for the equation (2) the following functional
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If in the latter we replace the derivatives of function C by the directional derivatives,
we obtain:
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where the angles constructed of the directions li, (i = 1, 4) with respect to axes ox1 in
anti clockwise direction is denoted by αi, namely

(l1, l2, l3, l4)=̇(α, 1800 − α, 1800 + α, 3600 − α)

see fig.1.
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fig.1.
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(δ1) cross-section is hatched on the figure.
Let us divide the rectangular parallelepiped G in elemental cells by the planes

parallel to coordinate planes xoy, xoz, xoy. After that we use the mean value formula
and write out the difference functional corresponding to functional I(c) with respect
to the main node of the elementary cell ”0” (”0” node is a center of gravity of the cell),
we obtain:
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According to the principle of Hamilton, we obtain the following three-layer difference
scheme depending on the parameter σ:
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The obtained scheme represents the generalization of the scheme considered in [4]. Let
us write out the obtained scheme in the coordinates:
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The scheme (3) is unconditionally stable and it approximates the problem (1) by the
order 0(h2 +τ 2). (hi, i = 1, 3 are steps with respect to spatial variables, τ - with respect
to time).

The graphs describe a distribution of function C in the medium planes ABCD and
A1B1C1D1 of parallelepiped G (see fig.1), when C(x, y, z, 0) = C(x, y, z, τ) = 0.5, T =
= 40000, h1 = h2 = 200; h3 = 100; τ = 400.

In the new coordinates accordingly T1 = 3, h1 = h2 = 1
20

; h3 = 1
40

; τ = 0.03.
Our aim is to study the unconditionally stable scheme (3) in conditions of realization

of the problems of hydrothermodynamics. In view of this we have carried out a number
of numerical calculations, which differed from each other by values of axe components
of the wind velocity, turbulence coefficients, the intensity of outer polluting source and
its geometrical placement and type (point sources, linear sources). On the figures 2
and 3 there are given the results of some characteristic numerical calculations. In order
to show the possibilities of numerical scheme, we everywhere left unchanged the axe
components of the wind velocity and turbulence coefficients, the values of which were
taken in the frame of the mean values of real processes appear in the atmosphere,
and the polluting sources, which in the conditionally stable schemes greatly define
the stability of numerical schemes, differ from each other by their placement in the
rectangular parallelepiped and their type. Namely, on the figures 2 and 3 there are
given the results of numerical calculation, when the polluting source had a linear form
and it was placed on line A1B1 of rectangular parallelepiped, and on the figures 4 and
5 analogously are given the pictures of the distribution of the pollutant concentration,
when the polluting source was presented as three point sources, placed uniformly on
line A1B1 of the parallelepiped.. (On the figures 2 and 4 are given the pollutant
concentration on perpendicular vertical plane of the parallelepiped, which goes on the
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polluting source, and on the figures 3 and 5 are shown the results of the same numerical
calculations on horizontal plane of the central part of parallelepiped). The figures 6
and 7 show the results of numerical calculations, when the polluting source was placed
on edge, parallel to line A1B1. (On the figure 6 there are given the results of numerical
calculations, which correspond to linear source, and on the figure 7 - to three point
sources.) By the comparing of figures 2 and 4, as well as figures 3 and 5, figures
6 and 7 with each other, it can be obviously seen (where are shown the results of
numerical calculations corresponding to physical time 18.00) that for unconditionally
stable scheme the character of the polluting source intensity did not make important
changes. However the distributions of concentrations in case of linear and point sources
differed from each other. Thus, we can conclude that the scheme (3) can be used for the
numerical integration of the parabolic type equations, where are included the medium
polluting sources.

fig.2. fig.3

fig.4. fig.5
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fig.6. fig.7
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