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ON THE SET OF INTEGER PARTITION AND CLOSED FORM FOR
ITS LENGTH IN SPECIAL CASES
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Abstract. In this article we study a set of integer partitions and its length. The
purpose of this study is better understand how partition set is constructed and
develop an algorithm, which will make computations in acceptable time. Here we
introduce an algorithm to construct the set and give explicit forms for a number
of n partitions into k parts for some values of k.
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1. Introdaction

A partition of a non-negative integer n into k parts is a set of vectors
with the k length and non-negative integer coordinates whose sum is n.
Let’s denote this set as Pk(n) and write it as follows

Pk(n) = {(n1, n2, . . . , nk) :

n1 + n2 + · · ·+ nk = n & n1 ≥ n2 ≥ · · · ≥ nk ≥ 0} ,

here we add restriction ni ≥ ni+1, since other cases are permutations of
elements in the set.

For example, if we partition 5 into 3 parts, we get,

5 + 0 + 0 = 4 + 1 + 0 = 3 + 2 + 0 = 3 + 1 + 1 = 2 + 2 + 1,

so our set looks like

P3(5) = {(5, 0, 0), (4, 1, 0), (3, 2, 0), (3, 1, 1), (2, 2, 1)}.

Efficiently constracting the set Pk(n) is important for many problems
of mathematics and physics. For example in Series Reversion [1] and In-
vert power series [2], which is computation of the coefficients of the inverse
function. There have been made many works on the unrestricted partition
function p(n), which is length of n partition into n parts

p(n) = ‖Pn(n)‖ .

One of the most famous results were given by Euler [3] by showing a
generator function for p(n)

∞∑
n=0

p(n)qn =
∞∏

n=1

1

1− qn
.
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and by pentagonal number theorem [4] we have recursion for this function

p(n) =
∞∑

k=1

(−1)k+1

(
p

(
n− k(3k + 1)

2

)
+ p

(
n− k(3k − 1)

2

))
.

An asymptotic expression for p(n) function

p(n) ∼ 1

4n
√

3
exp

(
π

√
2n

3

)
, n → +∞

was first obtained by G. H. Hardy and Ramanujan in 1918. Later, in 1937,
Hans Rademacher [3] was able to write exact formula for p(n).

Bell [5] in his work proved that the length of restricted partitions of non-
negative n into k parts is a quasi polynomial of degree k − 1. In this work
we will prove the similar result, which will allow us to better understand
how partition lengths are related to each other and find closed form specific
k.

2. Constracting set of integer partition

In this section we will define Dk(n) restricted partitions of n into k
parts. This will allow us to algorithmically construct the set of unrestricted
partitions and find its length.

Definition 1. Dk(n) restricted partitions of non-negative integer n into
k parts is

Dk(n) = {(n1, n2, . . . , nk) : n1 + 2n2 + · · ·+ knk = n & ni ≥ 0} .

Lemma 1. There exists a bijection between Pk(n) and Dk(n).
Proof. Let us define f and g mappings as

f(n1, n2, . . . , nk) = (n1 − n2, n2 − n3, . . . , nk−1 − nk, nk),

g(n1, n2, . . . , nk) = (n1 + · · ·+ nk, n2 + · · ·+ nk, . . . , nk−1 + nk, nk) ,

then we can see that g is inverse of f

(f ◦ g)(n1, n2, . . . , nk) = (g ◦ f)(n1, n2, . . . , nk) = (n1, n2, . . . , nk).

This asserts that we have a bijection between two finite sets

f : Pk(n) −→ Dk(n) and g : Dk(n) −→ Pk(n).

This completes the proof.
Theorem 1. Set of restricted Dk(n) for k > 1 can be written constructed

by the following algorithm

Dk(n) =

{(
n−

k−1∑
s=1

(k − s + 1)us, uk−1, uk−2, . . . , u2, u1

)
:

0 ≤ u1 ≤ dk(n), 0 ≤ uj+1 ≤ dk(n; u1, . . . , uj)} ,

(1)
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where

dk(n) =
⌊n

k

⌋
, dk(n; u1, . . . , uj) =

⌊
n

k − j
− 1

k − j

j∑
s=1

(k − s + 1)us

⌋
.

Proof. Let’s start by cheking first few cases to see the pattern. For
k = 2 it is trivial

D2(n) = {(n1, n2) : n1 + 2n2 = n} =
{

(n− 2u, u) : 0 ≤ u ≤
⌊n

2

⌋}
,

since if u is bigger than bn/2c, then n− 2u < 0.
For k = 3 by the theorem, we have

D3(n) =

{
(n− 3u1 − 2u2, u2, u1) : 0 ≤ u1 ≤

⌊n

3

⌋
, 0 ≤ u2 ≤

⌊
n

2
− 3u1

2

⌋}
,

we can see that for any u1 and u2 it satisfies the main condition

(n− 3u1 − 2u2) + 2u2 + 3u1 = n.

Therefore we need to find boundaries for u1 and u2. Suppose u1 > n/3, then
3u1 > n and we get contradiction, so u1 ≤ n/3 and sine u1 is a non-negative
integer, its maximum value is bn/3c. To find the boundary for u2 we need
to study the following inequality

n− 3u1 − 2u2 ≥ 0 ⇒ u2 ≤
n

2
− 3u1

2
⇒ 0 ≤ u2 ≤

⌊
n

2
− 3u1

2

⌋
,

so we showed that the theorem is true when k ∈ {2, 3}.
Now we will prove the general result when k > 1. Without loss of

generality we can parametries elements of Dk(n) as

p0 =

(
n−

k−1∑
s=1

(k − s + 1)us, uk−1, uk−2, . . . , u2, u1

)
,

since it has the length of k and the identity(
n−

k−1∑
s=1

(k − s + 1)us

)
+ 2uk−1 + 3uk−2 + · · ·+ (k − 1)u2 + ku1 = n

is satisfied. Now we estimate boundaries of parameters. If u1 > bn/kc then
ku1 > n and p0 /∈ Dk(n), so

0 ≤ u1 ≤
⌊n

k

⌋
.

We take u1 to right side of the equation(
n−

k−1∑
s=1

(k − s + 1)us

)
+ 2uk−1 + 3uk−2 + · · ·+ (k − 1)u2 = n− ku1,
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and similarly if u2 > b(n− ku1)/(k − 1)c, then

(k − 1)u2 > n− ku1 ⇒ (k − 1)u2 + ku1 > n

and p0 /∈ Dk(n), so

0 ≤ u2 ≤
⌊

n− ku1

k − 1

⌋
.

So we can make assertion that for j > 1

0 ≤ uj ≤
⌊

n− (ku1 + (k − 1)u2 + · · ·+ (k − j + 2)uj−1)

k − j + 1

⌋
.

We will prove this statement using a proof by contradiction. Suppose

uj >

⌊
n− (ku1 + (k − 1)u2 + · · ·+ (k − j + 2)uj−1)

k − j + 1

⌋
and p0 ∈ Dk(n), then

(k − j + 1)uj > n− (ku1 + (k − 1)u2 + · · ·+ (k − j + 2)uj−1)

⇒ (k − j + 1)uj + (k − j + 2)uj−1 + · · ·+ (k − 1)u2 + ku1 > n,

which is a contradiction. This completes the proof.
Corollary 1. For any non-negative integer n length of D2(n) is

‖D2(n)‖ =
⌊
1 +

n

2

⌋
. (2)

Proof. From Theorem 1 it follows that

D2(n) =
{

(n− 2u, u) : 0 ≤ u ≤
⌊n

2

⌋}
and

‖D2(n)‖ =
∥∥∥{(n− 2u, u) : 0 ≤ u ≤

⌊n

2

⌋}∥∥∥ = 1 +
⌊n

2

⌋
=
⌊
1 +

n

2

⌋
.

This completes the proof.
Corollary 2. For any non-negative integer n the length of D3(n) is

‖D3(n)‖ =

⌊
1 +

n

2
+

n2

12

⌋
. (3)

Proof. Let’s write D3(n)

D3(n) =

{
(n− 3u1 − 2u2, u2, u1) : 0 ≤ u1 ≤

⌊n

3

⌋
, 0 ≤ u2 ≤

⌊
n

2
− 3u1

2

⌋}
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and so its length is

‖D3(n)‖ =

d3(n)∑
u1=0

d3(n;u1)∑
u2=0

1 =

d3(n)∑
u1=0

(1 + d3(n; u1))

= 1 + d3(n) +

d3(n)∑
u1=0

d3(n; u1)

= 1 +
⌊n

3

⌋
+

bn/3c∑
u1=0

⌊
n

2
− 3u1

2

⌋
= 1 +

⌊n

3

⌋

+

bn/6c∑
u=0

⌊
n

2
− 3(2u)

2

⌋
+

b(n−3)/6c∑
u=0

⌊
n

2
− 3(2u + 1)

2

⌋

= 1 +
⌊n

3

⌋
+

bn/6c∑
u=0

⌊n

2
− 3u

⌋
+

b(n−3)/6c∑
u=0

⌊
n− 3

2
− 3u

⌋
= 1 +

⌊n

3

⌋
+

(⌊n

2

⌋
− 3

2

⌊n

6

⌋)⌊n + 6

6

⌋
+

(⌊
n− 3

2

⌋
− 3

2

⌊
n− 3

6

⌋)⌊
n + 3

6

⌋
.

To prove equation (3) we need to check it for the following six cases:

n = 6k + j, k = 0, 1, 2, . . . , j ∈ {0, 1, . . . , 5}.

These cases are
‖D3(6k + 0)‖ = 3k2 + 3k + 1,

‖D3(6k + 1)‖ = 3k2 + 4k + 1,

‖D3(6k + 2)‖ = 3k2 + 5k + 2,

‖D3(6k + 3)‖ = 3k2 + 6k + 3,

‖D3(6k + 4)‖ = 3k2 + 7k + 4,

‖D3(6k + 5)‖ = 3k2 + 8k + 5

and we compare each with (3). This completes the proof.
Example 1. For example, when n = 6k + 3, then

‖D3(n)‖ =

⌊
1 +

6k + 3

2
+

(6k + 3)2

12

⌋
=

⌊
13

4
+ 6k + 3k2

⌋
= 3 + 6k + 3k2.

Theorem 2. For any non-negative integer n and k > 1 we have the
following recursion

‖Dk(n)‖ =

bn/kc∑
j=0

‖Dk−1(n− kj)‖ ,

where ‖D1(n)‖ = 1.
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Proof. From Theorem 1 it follows that the length of Dk(n) is

‖Dk(n)‖ =
∑

ku1+(k−1)u2+···+uk−1≤n

1 =

dk(n)∑
u1=0

dk(n;u1)∑
u2=0

· · ·
dk(n;u1,...,uk−2)∑

uk−1=0

1 (*)

and from this we have

‖Dk−1(n− ku1)‖ =

dk−1(n−ku1)∑
u2=0

dk−1(n−ku1;u2)∑
u3=0

· · ·
dk−1(n−ku1;u2,u3,...,uk−2)∑

uk−1=0

1.

By definition of the function dk we have the following equality

dk(n; u1, . . . , uj) =

⌊
n

k − j
− 1

k − j

j∑
s=1

(k − s + 1)us

⌋

=

⌊
n− ku1

k − j
− 1

k − j

j∑
s=2

(k − s + 1)us

⌋

=

⌊
n− ku1

k − j
− 1

k − j

j−1∑
s=1

((k − 1)− s + 1)us+1

⌋
= dk−1(n− ku1; u2, . . . , uj),

so

‖Dk−1(n− ku1)‖ =

dk(n;u1)∑
u2=0

dk(n;u1,u2)∑
u3=0

· · ·
dk(n;u1,u2,u3,...,uk−2)∑

uk−1=0

1,

which is a sub summation in (*)

‖Dk(n)‖ =

dk(n)∑
u1=0

‖Dk−1(n− ku1)‖ .

This completes the proof.
Corollary 3. For any non-negative integer n the length of D4(n) is

‖D4(n)‖ =

⌊
1 +

n

2
+

n

8

⌊n

2

⌋
+

n2

24
+

n3

144

⌋
(4)

Proof. From Theorem 2 we have

‖D4(12k + 0)‖ = 12k3 + 15k2 + 6k + 1,

‖D4(12k + 1)‖ = 12k3 + 18k2 + 8k + 1,

‖D4(12k + 2)‖ = 12k3 + 21k2 + 12k + 2,

‖D4(12k + 6)‖ = 12k3 + 33k2 + 30k + 9,

‖D4(12k + 7)‖ = 12k3 + 36k2 + 35k + 11,

‖D4(12k + 8)‖ = 12k3 + 39k2 + 42k + 15,
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‖D4(12k + 3)‖ = 12k3 + 24k2 + 15k + 3,

‖D4(12k + 4)‖ = 12k3 + 27k2 + 20k + 5,

‖D4(12k + 5)‖ = 12k3 + 30k2 + 24k + 6,

‖D4(12k + 9)‖ = 12k3 + 42k2 + 48k + 18,

‖D4(12k + 10)‖ = 12k3 + 45k2 + 56k + 23,

‖D4(12k + 11)‖ = 12k3 + 48k2 + 63k + 27

and by checking each case n = 12k+j, with (4) we can justify the equation.
This completes the proof.

Example 2. For example when n = 12k, then

‖D4(n)‖ =

⌊
1 +

12k

2
+

12k

8

⌊
12k

2

⌋
+

(12k)2

24
+

(12k)3

144

⌋
=
⌊
1 + 6k + 9k2 + 6k2 + 12k3

⌋
= 1 + 6k + 15k2 + 12k3.

Corollary 4. For any non-negative integer n the length of D5(n) is

‖D5(n)‖ =

⌊
1 +

11n

24
+

n

16

⌊n

2

⌋
+

11n2

144
+

n3

96
+

n4

2880

⌋
. (5)

Proof. To prove equation (5) we need to check 60 cases. To derive the
formula we need to analise the first few cases

‖D5(60k + 0)‖ = 4500k4 + 2250k3 +
775

2
k2 +

55

2
k + 1,

‖D5(60k + 1)‖ = 4500k4 + 2550k3 +
1015

2
k2 +

81

2
k + 1,

‖D5(60k + 2)‖ = 4500k4 + 2850k3 +
1285

2
k2 +

123

2
k + 2,

‖D5(60k + 3)‖ = 4500k4 + 3150k3 +
1585

2
k2 +

167

2
k + 3,

‖D5(60k + 4)‖ = 4500k4 + 3450k3 +
1915

2
k2 +

229

2
k + 5.

We obtained this expressions by Theorem 2. Now we can do this in revese.
If n = 60k, then

‖D5(n)‖ =
n4

2880
+

n3

96
+

31n2

288
+

11n

24
+ 1,

and if n = 60k + 1, then

‖D5(n)‖ =
n4

2880
+

n3

96
+

31n2

288
+

41n

96
+

1309

2880
.
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If we continue, we will see that the first three coefficients stay same, while
the coefficient of n is 11/24 if n is even and 41/96 if n is odd. To merge
these two expressions, we use simple obsession

41

96
=

44− 3

96
=

11

24
− 3

96

and so we get

n4

2880
+

n3

96
+

31n2

288
+

(44− 3(n− 2 bn/2c))n
96

+ 1

and we take the floor part of it. After writing our candidate we manually
check it for all n = 60k + j, where j ∈ {0, . . . , 59}. This completes the
proof.

Theorem 3. The set of restricted partitions Dk(n) satisfy the following
recursion

Dk(n) =

bn/kc⋃
j=0

Dk−1(n− kj)× {(j)}, (6)

where D1(n) = {(n)}.
Proof. By Theorem 1, we have a closed form of Dk(n), which is a union

of disjoint sets. Let’s take p ∈ Dk(n) and rewrite it as

p =

(
n−

k−1∑
s=1

(k − s + 1)us, uk−1, uk−2, . . . , u2, u1

)

=

(
(n− ku1)−

k−1∑
s=2

(k − s + 1)us, uk−1, uk−2, . . . , u2, u1

)

=

(
(n− ku1)−

k−2∑
s=1

(k − s)us+1, uk−1, uk−2, . . . , u3, u2

)
× {(u1)},

so p ∈ Dk−1(n−ku1)×{(u1)}. Therefore, we broke the original set into the
following subsets

Dk−1(n)×{(0)}, Dk−1(n− k)×{(1)}, . . . , Dk−1(n− k bn/kc)×{(bn/kc)}.

Because of the Cartesian product, it is clear that subsets are disjoint the
Theorem is proved.

Theorem 4. For any non-negative integer n and k > 1 the length of
Dk(n) is a polynomial of degree k− 1 and is same for each remainder class

‖Dk(lkb + r)‖ =
k−1∑
s=0

ar,sb
s, 0 ≤ r < lk, (7)
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where lk which is a least common multiple of 1, 2, 3, . . . , k,

lk = lcm(1, 2, 3, . . . , k)

and n = lkb + r.
Proof. We use induction to prove this result. From equation (2) it

follows that for k = 2

‖D2(2b)‖ = 1 + b, ‖D2(2b + 1)‖ = 1 + b

the statement holds. Suppose that this is true for some k, then from Theo-
rem 2 we have

‖Dk+1(n)‖ =

bn/(k+1)c∑
j=0

‖Dk(n− (k + 1)j)‖ ,

which is a sum of polynomials with degree k. Consider the representation
n as lk+1b + r, where 0 ≤ r < lk+1, so the summation number becomes⌊

n

k + 1

⌋
=

⌊
lk+1b + r

k + 1

⌋
=

lk+1

k + 1
b +

⌊
r

k + 1

⌋
,

where b is outside the floor function and since the finite sum of type

c1b+c2∑
j=0

jk−1,

where this is k degree polynomial with respect to b, so ‖Dk+1(n)‖ is a
polynomial of degree k. This completes the proof.

3. Conclusion

By Theorem 2 we developed an efficient algorithm to construct the set
of restricted partition. Since we have bijection between Dk(n) and Pk(n)
and they are finite, we get that their lengths are also same. Therefore, all
corollaries and theorems we proved for the length of Dk(n) also apply for
Pk(n). In the article we showed an explicit form for some values of k :

‖P1(n)‖ = 1,

‖P2(n)‖ =
⌊
1 +

n

2

⌋
,

‖P3(n)‖ =

⌊
1 +

n

2
+

n2

12

⌋
,

‖P4(n)‖ =

⌊
1 +

n

2
+

n

8

⌊n

2

⌋
+

n2

24
+

n3

144

⌋
,

‖P5(n)‖ =

⌊
1 +

11n

24
+

n

16

⌊n

2

⌋
+

11n2

144
+

n3

96
+

n4

2880

⌋
.
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