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TOPOLOGICAL INVARIANTS OF RANDOM POLYNOMIALS

Aliashvili T.

Abstract. Random polynomials with independent identically distributed Gaus-
sian coefficients are considered. In the case of random gradient endomorphism
F = (f, g) : R2 → R2 the mean topological degree is computed and the expected
number of complex points is estimated. In particular, the asymptotics of these
invariants are determined as the algebraic degree of F tends to infinity. We also
give the asymptotic of the mean writhing number of a standard equilateral ran-
dom polygon with a large number of sides and obtain a lower estimate for the
mean Coulomb energy of a standard equilateral random polygon.
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0. In this paper we consider pairs of random polynomials in two variables
with coefficients which are normal random variables and investigate some statis-
tical invariants of such pairs. For random polynomials of one variable, the most
natural statistical invariant is the expected number of real roots. This invariant
was investigated by M.Kac [1]. In particular, if all coefficients are independent
standard Gaussian random variables M.Kac was able to find the rate of growth
of the expected number of real roots as the algebraic degree of polynomial tends
to infinity

In a recent paper [10] the authors gave an effective formula for the average
crossing number of a standard equilateral random polygon (SERP) with n sides in
three-dimensional space. This formula, in particular, gives an explicit asymptotic
of this number as n → ∞ which has useful application to analysis of certain
qualitative phenomena in physics and biochemistry [10].

Notice that this result has direct consequences for random knots (knot as
usual means a closed curve without self-intersections). Indeed, it is known and
it is easy to prove that a closed polygon appearing in the model of SERP almost
surely has no self-intersections. Thus the mentioned result from [10] can be
considered as an estimate for the average crossing number of a random polygonal
knot.

1. Much less is known about random polynomials in several variables. For
example, it seems very difficult to find the expected number of real roots of (n×n)
-system of random polynomial equations with independent identically distributed
Gaussian coefficients. Only recently M. Shub and S. Smale [2] succeeded to
compute this invariant for certain special distributions of coefficients. Some other
developments in the spirit of [2] are summarized in [3].

These results suggested that one could try to estimate those topological in-
variants of random polynomials and mappings related to the real roots of poly-
nomial systems. A natural framework for such investigations was suggested by
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G.Khimshiashvili [4]. As was explained in many problems of such type it is crucial
to find the mean value of topological degree of a certain random endomorphism.
As was conjectured in [4], this problem should be solvable for rotation invariant
Gaussian distributions of coefficients introduced in [2]. This appeared possible
indeed and a general result of such kind was published in [4],[5]. Similar problems
were also considered in [6], [7].

All these results were concerned with the distributions introduced in [2] but
there do not exist any such results in the case when all coefficients are indepen-
dent identically distributed (i.i.d.) standard normals N(0, 1). In this note we
aim at obtaining some results for such distributions of coefficients using results
of [3] and our previous results on topological invariants of planar polynomial
endomorphisms [8].

Let us describe the setting more precisely. Remind some notations from
probability theory. Recall that if ξ is a random variable with Gaussian (normal)
density

fξ(x) =
1√
2πσ

e
−

x− a2

2σ2

σ > 0, −∞ < a < +∞ then the parameters a and σ are

a = Eξ, σ2 = Dξ.

Expectation and variance, correspondingly.
If (ξ, η) is a pair of random variables, then the value

cov(ξ, η) = E[(ξ − Eξ) · (η − Eη)]

is called covariation of ξ and η. If cov(ξ, η), then ξ and η are called non-correlated.
Variance Dξ is defined as cov(ξ, ξ) = Dξ. Coefficients of correlation are defined
as

ρ(ξ, η) =
cov(ξ, η)√
Dξ ·Dη

.

Since we are going to deal with random endomorphisms of the plane, we write
down explicitly that the 2-dimensional normal density is

fξη(x, y) =

1
2πσ1σ2

√
1− ρ

exp

{
− 1

(1− ρ)2

[
(x− a1)2

σ2
1

− 2ρ
(x− a1)2(y − a2)2

σ1σ2
+

(y − a2)2

σ2
2

]}
.

It is characterized by five parameters a1, a2, σ1, σ2, ρ where |a1| < ∞,
|a2| < ∞, |σ1| < ∞, |σ2| < ∞, |ρ| < 1.

They are

a1 = Eξ, a2 = Eη, σ2
1 = Dξ, σ2

2 = Dη, ρ = ρ(σ, η),

P (ξ ∈ B) = Φa,σ2(B) =
1√
2πσ

∫
B

e−
(u−a)2

2σ2 du

if a = 0 and σ = 1 then we have standard distribution Φ0,1 (denote by Φ(x))
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Φ(x) = Φ0,1(−∞, 0)
1√
2π

·
x∫
∞

e−
u2

2
du.

2. By analogy with the one-dimensional case it is natural to consider a ran-
dom polynomial endomorphism F of R2 defined by n random polynomials in n
variables with fixed algebraic multi-degree m = (m1, ...,mn) and compute the
mean topological degree as a function of n and mi. For n = 2 we get random
endomorphisms of the plane which, besides the topological degree, possess other
useful numerical invariants like the number of cusps or the number of complex
points. Endomorphisms of the plane are called planar endomorphisms and, fol-
lowing [5], we refer to them as plends.

The main goal of this note is to estimate the mean value of the topological
degree of a random plend defined by the gradient of a random polynomial with
i.i.d. central Gaussian coefficients. As was already mentioned, this means that all
coefficients are real random variables and have Gaussian (normal) distribution.
In the sequel the term “random polynomial” always refers to this situation. We
pass now to exact formulations.

Let R2 be the ring of real polynomials in two variables. For P ∈ R2, let degP
denote its algebraic degree, i.e. the highest order of monomials which appear in
P. Any with degP = m can be written as

P (x, y) =
m∑

k+l=0

akjx
kyj ,

where appears at least one non-vanishing ak,l with k + l = m. The leader P ∗ is
defined as the sum of monomials of highest order. Obviously it is a non-trivial
binary m-form.

Suppose akl = a
(ω)
kl are real Gaussian random variables, so we are given a

random polynomial as above. We can also take a pair of such random polynomials
(not necessarily with the same distribution of coefficients) and consider a random
plend

F = (PQ) : R2 → R2

with these polynomials as the components. In such a situation we speak of a
Gaussian random plend and we want to estimate certain geometric characteristics
of such a random plend.

As is well known, if F is proper then its (global) topological degree degF
is well-defined [4]. As one could await, a random plend almost surely (a.s.)
has several nice properties of which we need here only one. It can be proved
applying the same reasoning as was used in [6] to show that a random Gaussian
hypersurface is almost surely smooth.

Lemma 1. A Gaussian random plend is proper with probability one.
For those ω for which F (ω) is not proper, we set DegF (ω) = 0 . So we are

concerned with estimating the expectation (mean value) E(DegF ) of random
variable DegF and the expectation of its modulus E(|DegP

′ |) .
Theorem 1. Let P be a Gaussian random polynomial in two variables of

algebraic degree m ≥ 1 with independent standard normal coefficients as above.
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Then the expectation E(|DegP
′ |) of the absolute topological degree of its gradient

P
′
is asymptotically equivalent to 2

π log m as m tends to infinity
First of all, notice that it is sufficient to estimate the average topological

degree of the endomorphism (P ∗)
′

defined by leaders P ∗x , P ∗y which are binary
homogeneous m− 1 -forms.

Lemma 2. E(DegP
′
) = E(Deg(P ∗)

′
).

Notice further that the zero set Z of a homogeneous polynomial P ∗ consists
of a system of lines in R2 passing through the origin.Their intersections with the
unit circle S1 give a finite set of points Y = Z∩S1. These points obviously appear
in pairs and those pairs are in a one-to-one correspondence with the real roots
of polynomial in one variable P̂ which is obtained from P ∗ by dehomogenization
(i.e. we divide P ∗(x, y) by ym and introduce a new variable t = x

y . In other
words, the number k of points in Y equals 2r, where r is the number of real roots
of P̂ .

We now apply one formula which can be proved as in [8].
Lemma 3. r = 1−DegP

′
.

Namely, first one interprets the number k as the Euler characteristic χ(Y )
of the set Y . Next, according to [4], the Euler characteristic of the zero set of
homogeneous polynomial P ∗ can be expressed through the mapping degree of its
gradient by the formula

χ(Y ) = 2(1−Deg(P ?))

or equivalently,
r = 1−Deg(P ∗)

′
.

By taking expectations of absolute values of both sides of this formula we
get that the rates of growth of E(|DegP

′ |) and E(r) are equal. Thus we can
estimate the expected value of absolute gradient degree by finding the expectation
of the random variable equal to r . This appears possible due to the following
observation which follows directly from definitions.

Lemma 4. P̂ is a Gaussian random polynomial of algebraic degree m with
independent standard normal coefficients.

Thus we conclude that one can compute the expected number of real roots
E(r) of P̂ using Theorem 3.1 of [3]. Hence the fact that E(|DegP

′ |) has the
asymptotic indicated in the statement of the theorem follows from Theorem 2.2
of [3]. The proof is thus completed.

Actually, from the proof of Theorem 1 it follows that Lemma 3 enables us
one to find the exact mean value of E(|DegP

′
) . Indeed, to this end we can use

Theorem 2.1 of [3] and to compute E(r) . Since coefficients of are i.i.d. standard
normals, by the formula on page 8 of [3] we get

E(r) =
1
π

+∞∫
−∞

√
∂2

∂x∂y
log

1− (xy)n+1

1− xy
|x=y=tdt.

Theorem 2.

E(DegP
′
) = 1− 1

π

+∞∫
−∞

√
1

(t2 − 1)2
− (n + 1)2t2n

(t2n+2 − 1)2
dt.
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It should be noted that these results essentially use the specifics of gradient
mappings and we are not yet able to estimate the mean topological degree for
arbitrary Gaussian plend with the components of algebraic degree m.

3. We add some remarks on another invariant of random plends mentioned
in the introduction, namely, the expectation E(c(F )), where c(F ) is the number
of complex points of F. A natural setting in this context is to consider random
plends with fixed algebraic degrees of the components.

Definition 1. A point p ∈ R2 is called a complex point of F if the tangent
plane T(p,F (p)) ΓF to the graph ΓF of F in C2 is a complex line.

In other words, we estimate E(C(ΓF )), where C(ΓF ) is the number of complex
points on the graph ΓF ⊂ C2 = R2×R2. For our purposes it is useful to give an
analytic description of complex points.

Lemma 5. Complex points are exactly zeros of the polynomial endomorphism
∂F
∂z̄ , where ∂

∂z̄ = 1
2( ∂

∂x + i ∂
∂y ).

So it becomes possible to apply results from [4], which enables one to compute
the number of complex points in concrete cases and obtain some general estimates
in terms of the algebraic degree of F . Moreover, the algebraic number of complex
points can be computed as the local topological degree at infinity of ∂F/∂z̄, so
we can estimate its mean value using the results presented above.

So, if F = (f, g) : R2 → R2 is a polynomial plend then ∂̄F = ∂z̄F : R2 → R2

and the set of complex points of F coincides with ∂̄F−1(0). We are interested in
the case when the coefficients of plend are i.i.d. standard normals. More precisely,
consider F (ω) = (f (ω), g(ω)) : R2 → R2, where

f (ω) =
∑

0≤k+l≤n

a
(ω)
kl xkyl

and
g(ω) =

∑
0≤k+l≤n

b
(ω)
kl xkyl

are the random polynomials. Let the coefficients a
(ω)
kl and b

(ω)
kl 0 ≤ k + 1 ≤ n be

independent standard normals. In order to estimate the number of complex points
C(f, g) one can express E((∂̄F )−1(0)) by a covariance matrix and a moment curve
as in [3]. To this end we observe that the functions appearing in Cauchy-Riemann
conditions have the form

fx =
∑

0≤k+l≤n

k · aklx
k−lyl, fy =

∑
0≤k+l≤n

l · aklx
kyl−1,

gx =
∑

0≤k+l≤n

k · bklx
k−1yl, gy =

∑
0≤k+l≤n

l · bklx
kyl−1.

Here akl and bkl are the same as a
(ω)
kl and b

(ω)
kl above. So the polynomials

fx − gy =
∑

0≤k+l≤n

(k · aklx
k−lyl − l · bklx

kyl−1),

fy + gx =
∑

0≤k+l≤n

(l · aklx
kyl−1 + k · bklx

k−lyl)
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have coefficients which are central Gausssian random variables with variances
which can be computed using the fact that D(ka + lb) = k2D(a)+ l2D(b). More-
over, one can also compute the pairwise covariations of the coefficients of the
above two polynomials. Therefore we obtain a new plend

(fx − gy, fy + gx) : R2 → R2

with a multivariate normal distribution of coefficients with a covariation matrix
C. Now using Theorem 7.1 of [3] we can find the expected number of complex
points by simply substituting the matrix C in the integral formula on page 29 of
[3]. Now using the estimate given on page 30 of [3] we can conclude that E(c(F ))
grows not faster than Const(log m)2 as m tends to infinity.

However we are not yet able to find its exact asymptotics so we leave the
discussion of this and other invariants of random plends for future publications.

4. Since the average crossing number of a knot in three-dimensional space
characterizes some important topological features of its position in the space
[11], this result can be considered as a contribution towards computing basic
topological invariants of random polygons. As is well known, knots in the three-
dimensional space also possess other important topological invariants like the
writhing number [9] and self-linking number [12] which are closely related to
the average crossing number. Thus it is natural to try to compute or estimate
these invariants for a standard equilateral random polygon by analogy with the
mentioned result from [10]. Recall that a standard equilateral random polygon
(SERP) is a widely used model for random curves and extended physical objects
like polymers and DNA molecules [10]. In our context it can be described as
follows.

Let U = (u, v, w) be a three-dimensional random vector that is uniformly
distributed on the unit sphere S2 , i.e., the density function of U is

ϕ(U) =

{
1
4π , if |U | =

√
u2 + v2 + w2 = 1,

0, otherwise.

Suppose U1, U2, . . . , Un are independent random vectors uniformly distributed
on S2 . An equilateral random walk of n steps, denoted by Wn is defined as the
sequence of points in the three-dimensional space R3:

X0 = 0, Xk = U1 + U2 + · · ·+ Uk, k = 1, 2, . . . , n.

Each Xk+1 is called a vertex of the Wn and the line segment joining Xk and
Xk = 1 is called an edge of Wn (which is of unit length). In particular, Wn

becomes a polygon if Xn = 0. In this case, it is called an equilateral random
polygon and is denoted by Pn . Note that the joint probability density function
f(X1, X2, . . . , Xn) of the vertices of Pn is simply

f(X1, X2, . . . , Xn) = ϕ(U1)ϕ(U2) · · ·ϕ(Un) = ϕ(X1)ϕ(X2−X1) · · ·ϕ(Xn−Xn−1).

Let Xk be the k -th vertex of Pn (n ≥ k > 1). Its density function is defined by

f(Xk) =
∫ ∫

· · ·
∫

ϕ(X1)ϕ(X2 −X1) · · ·ϕ(Xk −Xk−1)dX1dX2 · · · dXk−1.
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5. The average crossing number (ACN) of Pn can be defined as follows. In [12]
it is shown that the average crossing number between the non-intersecting edges
l1 and l2 is given by

ACN(γ1, γ2) =
1
2π

∫
I

∫
I

|γ̇1(t), γ̇2(s), γ1(t)− γ2(s)|
|γ1(t)− γ2(s)|3

dtds,

where γ1, γ2 : I → R3 are the arclength parametrizations of l1 and l2 respectively,
I = [0, 1] and dot denotes differentiation over the parameter.

For a polygonal knot K, one defines

ACN(K) =
1
2

∑
ACN(X, Y ),

where X, Y are any non-consecutive sides of K.

We pass now to the first main result. Recall that the writhing number of a
knot is defined as follows [9]. We consider its two-dimensional family of parallel
projections and in each projection we count +1 or −1 for each crossing, depend-
ing on whether the overpass requires a counterclockwise or a clockwise rotation
to align with the underpass. The writhing number is then the signed number of
crossings averaged over all orthogonal projections on planes in R3. It is a confor-
mal invariant of the knot. The writhing number measures the global geometry
of a closed space curve or knot.

Let γ the arclength parametrization as above and γ̇(t) denote the unit tangent
vector for t ∈ Sl The following double integral formula from [13] allows one to
calculate the writhing number of two edges as above

W =
1
2π

∫
S1

∫
S1

|γ̇1(t), γ̇2(s), γ1(t)− γ2(s)|
|γ1(t)− γ2(s)|3

dtds.

Correspondingly, we define

W (K) =
∑

W (li, lj),

where li and lj are non-consecutive sides of 44 with 1 ≤ i ≤ j − 1 ≤ n− 1.
Denote by E|W (n)| the mean absolute value of the writhing number of a SERP
with n edges. Let us say that two functions f(n) and g(n) of n are asymptotically
equivalent if lim

n→∞
f(n)
g(n) = 1 .

Theorem 3. As n → ∞, the function E|W (n)| is asymptotically equivalent
to (3/16n lnn)1/2

The proof can be obtained by the scheme used in [4] and based on the reduc-
tion to a symmetric random walk on a real line. Indeed, according to [10] we have
E(ACN(n)) = 3/16n lnn + O(n) Notice that from the integral formulas for the
writhing number and ACN(n) it follows that the only difference between these
two invariants of knot is that the first one is obtained by counting each intersec-
tion in a planar projection of a knot with a sign equal to the sign of the Jacobian
of the Gauss mapping. Using the calculations from [10] it is possible to show that
the signs cancellation effect asymptotically leads to extracting the square root of
E(ACN(n)), which gives the result. An intuitive explanation is that the signs
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behave as in one-dimensional symmetric random walk i.e., the probability of each
sign on each step is 1

2 . Thus the mean writhing number is approximately equal
to the mean absolute deviation of symmetric random walk on the real line with
M = [ACN(n)] steps, where [ ] denotes the integer part (entier). This explains
the result, since it is well known that such mean deviation grows as

√
M.

6. Recall that the Coulomb energy of a polygonal knot is defined as follows
[13]. For disjoint line segments X, Y in R3 the energy is equal to

I(X, Y ) =
∫
X

∫
Y

dxdy

‖x− y‖2
.

Then, for a polygon K, one defines:

I(K) =
∑

I(X, Y )

(the sum is over all non-consecutive segments X, Y of K ). In order to relate
the energy with the average crossing number recall that the energy of a pair of
smooth paths γ1, γ2 : I → R3 can be computed as

I(γ1, γ2) =
∫
I

∫
I

|γ̇1(t)| |γ̇2(s)|
|y1(t)− y2(s)|2

dudv.

Using this and the evident inequalities∫
I

∫
I

(γ̇1(t)× γ̇2(s), γ1(t)− γ2(s))
|γ1(t)− γ2(s)|3

dtds

≤
∫
I

∫
I

|γ̇1(t)× γ̇2(s)|
|γ1(t)− γ2(s)|2

dtds ≤
∫
I

∫
I

|γ̇1(t)||γ̇2(s)|
|γ1(t)− γ2(s)|2

dtds,

we get
I(γ1, γ2) ≥ 4πACN(γ1, γ2).

Now for a polygonal knot K it is easy to show that I(K) ≥ 4πACN(K).
Finally, let E(n) denote the mean value of Coulomb energy of a SERP Pn with
sides.

Theorem 4. For sufficiently big n, one has lim
n→∞

4E(n)
3πn ln n ≥ 1.

From the above inequality it follows that E(n) ≥ 4πE(ACN(n)). Thus our
result follows from the main result of [10].

R E F E R E N C E S

1. Kac M. On the average number of real roots of a random algebraic equation. Bull.
Amer. Math. Soc., 49 (1943), 314-320.

2. Shub M., Smale S. Complexity of Bezout’s theorem. Progr. Math., 109 (1993),
267-285.

3. Edelman A., Kostlan E. How many roots of a random polynomial are real? Bull.
Amer. Math. Soc., 33 (1995), 1-37.



Topological Invariants of Random Polynomials 11

4. Khimshiashvili G. Signature formulae for topological invariants Proc. A. Raz-
madze Math. Inst., 125 (2001), 1-121.

5. Aliashvili T. On invariants of random planar endomorphisms. Banach
Center Publ., 62 (2004), 19-28.

6. Ibragimov I., Podkorytov S. On random algebraic surfaces. surfaces. Dokl.
Ross. Akad. Nauk., 343 (1995), 734-736.

7. Khimshiashvili G., Ushveridze A. On the average topological degree of
random polynomials. Bull. Georgian Acad. Sci., 159 (1999), 385-388.

8. Aliashvili T. Topological invariants of random polynomials. Soobshch.
Akad. Nauk Gruzii, 148 (1993), 32-35.

9. Agarwal P., Edelsbrunner H., Wang Y. Computing the writhing number
of a polygonal Knot. Discrete Comp. Geom., 32 (2004), 37-53.

10. Diao Y., Dobay A., Kusner R., Millet K., Stasiak A. The average crossing
number of equilateral random polygons. J. Phys., 36 (2003), 11561-11574.

11. Dubrovin B., Novikov S., Fomenko A. Modern Geometry. Methods of the
homology theory. Modern Geometry. Nauka, Moscow, 1984.

12. Freedman, Z.He. Divergence-free fields: Energy and asymptotic crossing
number. Ann. Math., 134 (1991), 189-229.

13. Simon J. Energy functions for polygonal knots. Knot Theory Ramif., 3
(1994), 299-320.

Received 03.09.2022; accepted 13.11.2022.

Author’s address:

T. Aliashvili
Ilia State University
Faculty of Business, Technology and Education
3/5, K. Cholokashvili Ave., Tbilisi 0162
Georgia
E-mail: t.aliashvili@gmail.com


