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ON THE 3D STOKES FLOW IN THE INFINITE DOMAINS

Khatiashvili N., Janjgava D.

Abstract. In the paper the 3D problem for the non-stationary Stokes flow in the
infinite cylindrical and prismatic areas is studied. We admit that the pressure
can be controlled and depends on time exponentially. The linear Stokes system
is considered with the appropriate initial-boundary conditions. By means of the
Poisson formula and the integral equation method the system is reduced to the
system of integral equations with the weakly singular kernel. The existence and
uniqueness of solution is obtained, if the power at the exponent satisfies the
certain conditions. The exact solutions are obtained by means of the stepwise
approximation method. Several examples are given. The results have applications
in technological processes and medicine.
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1. Introduction

For very viscous Newtonian fluids (creeping flows) and low Reynolds number
the Navier-Stokes equations can be linearized and reduced to the linear Stokes
equations [1, 14-22, 25, 27, 29, 30]. We study this equation in 3D case with the
equation of continuity

∂~V

∂t
+

1

ρ
∇P = ~F + ν∆~V , (1)

div~V = 0, (2)

where ~V (Vx, Vy, Vz) is the velocity, ~F (Fx, Fy, Fz) is the body force, P is the pres-
sure, ρ is the density and ν is the viscosity of the fluid.

The examples of creeping flows are the flow of oils, flow of lava, flow of viscous
polymers, etc.[1, 14-23, 25, 27, 29, 30].

In the stationary case in the different 2D and 3D areas the Stokes sys-
tem was reduced to the biharmonic equation for the stream function with non-
homogeneous boundary conditions [14-22, 24–27, 29, 30].

Lorentz and Hancock have introduced the fundamental solution for steady
Stokes flow [3, 14-22, 25, 27, 29, 30].

The solutions of Stokes flow inside or outside the sphere was obtained by
Lamb in terms of series of spherical harmonics [1, 14-22, 25, 27, 29, 30].

The case of the axial symmetry was investigated in [3, 6, 8-10, 14-22, 25, 27,
30].

The numerical treatment of (1), (2) by mixed finite element methods (FEM)
was considered in [5–7, 21, 28, 30]. For rectangular channel and tubes of equi-
lateral triangular cross-section and elliptical cross-section the velocity profile was
found by J. Boussinesq [31].



20 Khatiashvili N., Janjgava D.

We study the system (1), (2) in the cylindrical and prismatic areas with an
arbitrary cross-section bounded by the piecewise smooth line (in the simply con-
nected region) with the appropriate initial-boundary conditions. We suppose that
the pressure can be regulated and depends on time exponentially. By means of
Poissons formula the initial problem is reduced to the system of integral equa-
tions with the weakly singular kernel. Using the Fredholm theorem the sufficient
conditions for the existence and uniqueness of solution of the system (1), (2)
are obtained, the approximate solutions are constructed and hence the velocity
components are defined.

Several examples are given and profiles of velocity are plotted by means of
Maple. The results have applications in some industrial processes for pipelines,
in the medical surgery and microfluidic devices (MEMS).

2. Statement of the problem

We study 3D Stokes flow in the infinite cylindrical or prismatic area D =
{D0×[−∞,∞];−∞ < z <∞} with the cross-section D0 , where D0 is the simply
connected region in x0y plane bounded by a piecewise smooth line φ(x, y).

We rewrite system (1), (2) in terms of velocity components in the cartezian
coordinates xOyz

∂Vx
∂t

+
1

ρ

∂P

∂x
= Fx + ν∆Vx, (3)

∂Vy
∂t

+
1

ρ

∂P

∂y
= Fy + ν∆Vy, (4)

∂Vz
∂t

+
1

ρ

∂P

∂z
= Fz + ν∆Vz, (5)

∂Vx
∂x

+
∂Vy
∂y

+
∂Vz
∂z

= 0. (6)

From (3), (4), (5), (6) we have

∆P = ρdiv ~F . (7)

In the case when the body force is solenoidal (div ~F = 0) one obtains ∆P = 0
[1, 14-22, 25, 27, 29, 30].

We consider system (3), (4), (5), (6) with the following initial-boundary con-
ditions

Vx|S = Vy|S = Vz|S = 0, (8)

Vx(x, y, z, 0) = V 0
x (x, y, z), Vy(x, y, z, 0) = V 0

y (x, y, z), Vz(x, y, z, 0) = V 0
z (x, y, z),

Fx(x, y, z, 0) = F 0
x (x, y, z), Fy(x, y, z, 0) = F 0

y (x, y, z), Fz(x, y, z, 0) = F 0
z (x, y, z),

P (x, y, z, 0) = P0(x, y, z),

where S is the boundary of D, V 0
x (x, y, z), V 0

y (x, y, z), V 0
z (x, y, z) are to be de-

termined and
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F 0
x (x, y, z), F 0

y (x, y, z), F 0
z (x, y, z), P (x, y, z, 0) = P (x, y, z), are the given

smooth functions.

Let us suppose that the pressure satisfies equation (7) and depends on time
exponentially, besides we admit

Vx = exp(−αt)V 0
x , Vy = exp(−αt)V 0

y , Vz = exp(−αt)V 0
z , (9)

Fx = exp(−αt)F 0
x , Fy = exp(−αt)F 0

y , Fz = exp(−αt)F 0
z ,

P (x, y, z, t) = exp(−αt)P0(x, y, z),
(10)

α > 0 is the definite constant.

By (3), (4), (5), (6), (8), (9), (10) system (3), (4), (5) (6) will be reduced to
the system

∆V 0
x +

α

ν
V 0
x =

1

ρν

∂P0

∂x
− 1

ν
Fx, (11)

∆V 0
y +

α

ν
V 0
y =

1

ρν

∂P0

∂y
− 1

ν
Fy, (12)

∆V 0
z +

α

ν
V 0
z =

1

ρν

∂P0

∂z
− 1

ν
Fz, (13)

∂V 0
x

∂x
+
∂V 0

y

∂y
+
∂V 0

z

∂z
= 0, (14)

with the following boundary conditions

V 0
x |S = V 0

y |S = V 0
y |S = 0. (15)

We have to solve the following problem

Problem. For the given pressure satisfies equation (7) in the area D find
the functions V 0

x , V
0
y , V

0
z vanishing at infinity, having continuous second order

derivatives, satisfying system (3), (4), (5), (6) and the boundary condition (15).

3. Solution of Problem 1

As V 0
x (x, y, z), V 0

y (x, y, z), V 0
z (x, y, z), vanish at infinity, we suppose V 0

x (x, y, z)
≈ 0, V 0

y (x, y, z) ≈ 0, V 0
z (x, y, z) ≈ 0, for |z| > b, b = const > 0 b is a rather large

number. We now consider Problem 1 for the area D∗0 = {D0 × [−b, b]}. In the
previous paragraph system (3), (4), (5), (6) was reduced to the system (11), (12),
(13), (14). By using Poisson’s formula for (11), (12), (13), (14), (15) one obtains
the system of following integral equations [2]

V 0
x −

3α

4πν

∫
D∗

0

G(x, y, z, x1, y1, z1)V
0
x dx1dy1dz1

= − 3
4π

∫
D∗

0
G(x, y, z, x1, y1, z1) Φ1dx1dy1dz1,

(16)

V 0
y −

3α

4πν

∫
D∗

0

G(x, y, z, x1, y1, z1)V
0
y dx1dy1dz1

= − 3
4π

∫
D∗

0
G(x, y, z, x1, y1, z1) Φ2dx1dy1dz1,

(17)
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V 0
z −

3α

4πν

∫
D∗

0

G(x, y, z, x1, y1, z1)V
0
z dx1dy1dz1

= − 3
4π

∫
D∗

0
G(x, y, z, x1, y1, z1) Φ3dx1dy1dz1,

(18)

where G(x, y, z, x1, y1, z1) is the Green function for the Laplace equation in the
area D∗0,

Φ1 =
1

ρν

∂P0

∂x
− 1

ν
F 0
x ,Φ2 =

1

ρν

∂P0

∂y
− 1

ν
F 0
y ,Φ3 =

1

ρν

∂P0

∂z
− 1

ν
F 0
z .

According to (7) and (14) the following integral equation should have only trivial
solution (∂V 0

x

∂x
+
∂V 0

y

∂y
+
∂V 0

z

∂z

)
− 3α

4πν

∫
D∗

0

G(x, y, z, x1, y1, z1)

×
(∂V 0

x

∂x
+
∂V 0

y

∂y
+
∂V 0

z

∂z

)
dx1dy1dz1 = 0.

(19)

Equations (16), (17), (18), (19) are Fredholm equations with the weakly-
singular self-adjoint kernel G(x, y, z, x1, y1, z1). Hence, the Fredholm theorem

is valid [2] and we conclude, that
3α

4πν
is not the eigenvalue of equation (19).

Concequently, there exist the unique solutions of equations (16), (17), (18).
By means of the Banach theorem we obtain [2]:

If
3α

4πν
<

1

M
, where∫

D∗
0

|G(x, y, z, x1, y1, z1)|dx1dy1dz1 ≤M, (x, y, z) ∈ D∗0,

then there exists the unique solutions of (16), (17), (18) which are given by the
formulas

V ∗x = lim
n→∞

Vx,n;V ∗y = lim
n→∞

Vy,n;V ∗z = lim
n→∞

Vz,n, (20)

where

Vx,0 = − 3

4π

∫
D∗

0

G(x, y, z, x1, y1, z1)Φ1 dx1dy1dz1,

Vx,n = Vx,0 +
3α

4πν

∫
D∗

0

G(x, y, z, x1, y1, z1)Vx,(n−1)dx1dy1dz1,

Vy,0 = − 3

4π

∫
D∗

0

G(x, y, z, x1, y1, z1)Φ2dx1dy1dz1,

Vy,n = Vy,0 +
3α

4πν

∫
D∗

0

G(x, y, z, x1, y1, z1)Vy,(n−1)dx1dy1dz1.

Vz,0 = − 3

4π

∫
D∗

0

G(x, y, z, x1, y1, z1)Φ3dx1dy1dz1,

Vz,n = Vz,0 +
3α

4πν

∫
D∗

0

G(x, y, z, x1, y1, z1)Vz,(n−1)dx1dy1dz1.

For example, if 9α
16π2ν2

is negligible, then the solutions of system (16), (17),
(18) are Vx,0, Vy,0 Vz,0 respectively.
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Hence, the following theorem is true
Theorem. If the pressure P (x, y, z, t) and the body force ~F (Fx, Fy, Fz) depend

on time exponentially and are given by

Fx = exp(−αt)F 0
x , Fy = exp(−αt)F 0

y , Fz = exp(−αt)F 0
z ,

P (x, y, z, t) = exp(−αt)P0(x, y, z),

where α > 0 is the definite constant, the functions F 0
x , F

0
y , F

0
z have first order

derivatives and P0 has second order derivatives in D, then :
1. If 3α

4πν is not the eigenvalue of the homogeneous integral equation (19),
there exists the unique solution of the Stokes system (3), (4), (5).

2. If 3α
4πν <

1
M , where∫

D∗
0

|G(x, y, z, x1, y1, z1)|dx1dy1dz1 ≤M, (x, y, z) ∈ D∗0

then there exists the unique solution of Stokes system (3) , (4), (5 ) which is
given by

Vx = exp(−αt)V 0
x , Vy = exp(−αt)V 0

y , Vz = exp(−αt)V 0
z ,

where V 0
x , V

0
y , V

0
z are given by formula (20).

Remark 1. The vortex ~Ω(Ω1,Ω2,Ω3) for the Stokes flow in a pipe will be
defined by formula [1, 14-22, 25, 27, 29, 30]

Ω1 =
∂Vz
∂y
− ∂Vy

∂z
, Ω2 =

∂Vx
∂z
− ∂Vz

∂x
, Ω3 =

∂Vy
∂x
− ∂Vx

∂y
.

4. The case of the semi-infinite region

We now consider the Stokes flow in the area D∗ = {D0× [0,∞]; 0 ≤ z <∞}}
with the cross-section D0, where D0, is the simply connected region bounded by
a piecewise smooth line φ(x, y) and suppose

V 0
x |φ(x,y) = V 0

y |φ(x,y) = V 0
z |φ(x,y) = 0, (21)

Vx(x, y, z, t) = exp(−αt) exp(βz)V 0
x (x, y),

Vy(x, y, z, t) = exp(−αt) exp(βz)V 0
y (x, y),

(22)

Vz(x, y, z, t) = exp(−αt) exp(βz)V 0
z (x, y),

Fx(x, y, z, t) = exp(−αt) exp(βz)F 0
x (x, y),

Fy(x, y, z, t) = exp(−αt) exp(βz)F 0
y (x, y),

Fz(x, y, z, t) = exp(−αt) exp(βz)F 0
z (x, y),

P (x, y, z, t) = exp(−αt) exp(βz)P0(x, y),

where β is some constant, F 0
x (x, y), F 0

y (x, y), F 0
z (x, y), P0(x, y), are the given

smooth functions, V 0
x (x, y), V 0

y (x, y) , V 0
z (x, y) are doubly differentiable functions
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in D0 to be determined. This case was considered in [12] and system (3), (4),
(5), (6) was reduced to the system of Helmholtz equations

∆V 0
x +

(α
ν

+ β2
)
V 0
x =

1

ρν

∂P0

∂x
− 1

ν
F 0
x , (23)

∆V 0
y +

(α
ν

+ β2
)
V 0
y =

1

ρν

∂P0

∂y
− 1

ν
F 0
y , (24)

∆V 0
z +

(α
ν

+ β2
)
V 0
z =

β

ρν
P0 −

1

ν
F 0
z , (25)

∂V 0
x

∂x
+
∂V 0

y

∂y
+ β V 0

z = 0, (26)

with boundary conditions (21).
Equation (7) becomes

∆P0 + β2 P0 = ρ
∂F 0

x

∂x
+ ρ

∂F 0
y

∂y
+ ρβ F 0

z . (27)

By (21), (22) and Poisson formula system (23), (24), (25), (26) will be reduced
to the system of Fredholm integral equations [12]

V 0
x −

1

2π

(α
ν

+ β2
)∫

D0

G(x, y, x1, y1)V
0
x dx1dy1

= − 1
2π

∫
D0

G(x, y, x1, y1) Φ0
1dx1dy1,

(28)

V 0
y −

1

2π

(α
ν

+ β2
)∫

D0

G(x, y, x1, y1)V
0
y dx1dy1

= − 1
2π

∫
D0

G(x, y, x1, y1) Φ0
2dx1dy1,

(29)

V 0
z −

1

2π

(α
ν

+ β2
)∫

D0

G(x, y, x1, y1)V
0
z dx1dy1

= − 1
2π

∫
D0

G(x, y, x1, y1) Φ0
3dx1dy1,

(30)

where G(x, y, x1, y1) is the Green function for the Laplace equation in the area
D0,

Φ0
1 =

1

ρν

∂P0

∂x
− 1

ν
F 0
x ,Φ

0
2 =

1

ρν

∂P0

∂y
− 1

ν
F 0
y ,Φ

0
3 =

β

ρν
P0 −

1

ν
F 0
z .

In [12] it is shown that 1
2π (αν + β2) is not the eigenvalue of the corresponding

homogeneous integral equation and the system has the unique solution.
If 1

2π (αν +β2) is rather small, the solution of system (28), (29), (30) is obtained
by means of the stepwise approximation method and is given by

V ∗x = lim
n→∞

Vx,n;V ∗y = lim
n→∞

Vy,n, V
∗
z = lim

n→∞
Vz,n, (31)

where

Vx,0 = − 1

2π

∫
D0

G(x, y, x1, y1)Φ
0
1 dx1dy1,

Vx,n = Vx,0 +
1

2π

(α
ν

+ β2
)∫

D0

G(x, y, x1, y1)Vx,(n−1)dx1dy1,
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Vy,0 = − 1

2π

∫
D0

G(x, y, x1, y1)Φ
0
2dx1dy1,

Vy,n = Vy,0 +
1

2π

(α
ν

+ β2
)∫

D0

G(x, y, x1, y1)Vy,(n−1)dx1dy1,

Vz,0 = − 1

2π

∫
D0

G(x, y, x1, y1)Φ
0
3dx1dy1,

Vz,n = Vy,0 +
1

2π

(α
ν

+ β2
)∫

D0

G(x, y, x1, y1)Vz,(n−1)dx1dy1.

If 1
4π2ν

(αν + β2) is negligible, then the solution of system (28), (29), (30) is
Vx,0, Vy,0 Vz,0.

Hence, the unique solution of system (3), (4), (5) in the area D∗ in case of

Fx(x, y, z, t) = exp(−αt) exp(βz)F 0
x (x, y),

Fy(x, y, z, t) = exp(−αt) exp(βz)F 0
y (x, y),

Fz(x, y, z, ) = exp(−αt) exp(βz)F 0
z (x, y),

P (x, y, z, t) = exp(−αt) exp(βz)P0(x, y),

exists if 1
2π (αν + β2) is not the eigenvalue of the homogeneous integral equation

V 0
x −

1

2π

(α
ν

+ β2
)∫

D0

G(x, y, x1, y1)V
0
x dx1dy1 = 0,

and is given by

Vx(x, y, z, t) = exp(−αt) exp(βz)V 0
x (x, y),

Vy(x, y, z, t) = exp(−αt) exp(βz)V 0
y (x, y),

Vz(x, y, z, t) = exp(−αt) exp(βz)V 0
z (x, y),

where V 0
x (x, y), V 0

y (x, y), V 0
z (x, y) are the solutions of system (28), (29), (30).

Remark 2. For some areas the Green function can be constructed in the
explicit form:

1. In case, when D0 is the ellipse x2/a2 + y2/b2 = 1; a, b > 0,

G(x, y, x0, y0) = G(z, z0) = −ln|w − w0|; z = x+ iy; z0 = x0 + iy0,

w =
i

dn(Kπ arcosz)

where dnz =
√

1− k2sn2 z is the Jakobi function, K, k > 0 are the definite
constants [4, 20].

2. In case, when D0 is the part of the lemniscate [4, 20]

(x2 + y2)2 = a2(x2 − y2); x ≥ 0; a > 0, (32)

(r = cos2ϕ; −π/4 ≤ ϕ ≤ π/4 in polar coordinates), the Green function is

G(x, y, x0, y0) = G(z, z0) = −ln|z − z0|2; z = x+ iy; z0 = x0 + iy0.
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3. In case, when D0 is the hexagon with the one vertex at the point x = y = 0,
the Green function will be given by

G(x, y, x0, y0) = G(z, z0) = −ln|W − ih
W + ih

− W0 − ih
W0 + ih

|;W0 = W (z0),

where

W = f−1(z); f(z) = C

∫ z

0
t−1/3(t2 − a2)−1/3(t2 − b2)−1/3 dt,

C is some parameter, h, a, b > 0 are the definite constants [4, 20].

Remark 3. The free boundary problem for the 2D Stokes flow has been
studied in [11,13].

5. Example

As an example we consider the virtual oil pipeline. The oil pipeline is the
complicated system consisting of chains of pipes of different slope and pump-
stations (for the pressure regulation).

We consider the part of the pipeline− a pipe with the definite slope with the
angle of inclination θ with respect to the horizontal line of the earth.

We consider the pipe of the length L ≈ 100km,the diameter D ≈ 1m, and
admit that the axis Oz is the axis of symmetry of the pipe in the direction of the
fluid flow. We will calculate the velocity of the flow for the pressure P = P0+C3y
and the following data: for z = 0 ,P0 ≈ 2100KPa, for z = 100 , P0 ≈ 780KPa,
ν ≈ 1.5St,

F 0
x = 0;F 0

y = (C1 + C2y) cosθ;F 0
z = (C1 + C2y) sinθ;

C1 = C2 = β = −0.01;α = 0, P0 ≈ 2100KPa;

ρ ≈ 600kg/m3; θ = π/6; ν ≈ 1.5St.
(33)

According to (27)

β(P0 + C3y) = ρ(cosθ + sinθ) + βρysinθ;C3 = ρsinθ.

In the circular pipe (D0 is the circle (x − 1)2 + y2 = 1) and for the pipe of
the lemniscate cross-section (formula (32) for a = 2) the velocity of the flow we
calculate by formula (31) for data (33)

Vx(x, y, z, 0) = 0, (34)

Vy(x, y, z, t) = exp(βz)Vy,0

= − exp(βz) 1ν
∫
D0

(sinθ + β(1 + y1) cosθ)G(x, y, x1, y1) dx1dy1,
(35)

Vz(x, y, z, t) = exp(βz)Vz,0

= −β
ν exp(βz)

∫
D0

(cos θ)G(x, y, x1, y1) dx1dy1,
(36)
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In Fig. 1 and Fig. 2 the profile of the velocity near the axis x = 0 is given
for the pipe with the circular cross-section.

For the same data the flow velocity for the pipe with the lemniscates cross-
section D0 : (x2 + y2)2 = a2(x2 − y2);x ≥ 0 a = 2, will be calculated also by the
formulas (34), (35), (36).

In Fig. 3 and Fig. 4 the profile of the velocity near the axis x = 0 is given
for the pipe with the lemniscates cross-section.

Fig. 1. The profile of the velocity Fig. 2. The profile of the velocity
near the axis 0x for the data (33) near the axis 0x for the data (33)
and z = 0 in case of the circular and z = 100 in case of the circular

cross-section (x− 1)2 + y2 = 1 cross-section (x− 1)2 + y2 = 1

Fig. 3. The profile of the velocity Fig. 4. The profile of the velocity
near the axis 0x for the data (33) near the axis 0x for the data (33)
and z = 0 in case of the lemniscate and z = 100 in case of the lemniscate

(32) cross-section a = 2 (32) cross-section a = 2
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