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INVERSE PROBLEM FOR SECOND ORDER REGULAR EQUATIONS
AND LINE CONFIGURATION OF SINGULAR POINTS
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Abstract. In this paper we deal with the problem of construction of second order

regular differential equations with polynomial coefficients on Riemann sphere with

given monodromy, such problem arises from inverse problem of electrostatics and

is related to controlability of quantum systems. We consider the particular case

of this problem.
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1. Reduction of the Schrödinger equations to Fuchsian systems

It is known that certain physically interesting Schrödinger equations

i
∂Ψ(t)

∂t
= H(t)Ψ(t) (1)

with time-dependent Hamiltonian H(t) = (Hij(t)), i, j = 1, ..., N , where

H11 = ε(t), H12 = V2, H13 = V3, ..., H1N = VN ,

H21 = V2, H31 = V3, ..., HN1 = VN , andHij = 0 otherwise,

Ψ(t) = (ψ1(t), ..., ψN(t)) is a wave function, Vj, j = 2, . . . , n are constants,
and the time-dependent part ε has the form ε(t) = E1 tanh(t/T ) with con-
stant E1 and T can be rewritten as Fuchsian systems [4] of special type

(zI− B)Ẋ = AX, (2)

whereX is a complex-valued (n-column) vector function of complex variable
z, dot denotes differentiation over z and

B = s1In1 ⊕ ...⊕ spInp , si ∈ C; si ̸= sj, when i ̸= j;n1 + ...+ np = n

and A ∈ End(n,C).
In particular equation (1) is reducible to an N -dimensional Fuchsian

system of type (2)

(zIN − B)
dΦ(z)

dz
= AΦ(z) (3)
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with B = diag(i,−i, . . . ,−i).
In this way one can construct Schrödinger equations with prescribed

qualitative properties of solutions through monodromy representation of
Fuchsian system (see, e.g., [4]). Namely, for N = 2, we obtain a Schrödinger
equation with the two-component phase function

i
∂f(t)

∂t
= H(t)f(t), (4)

where f(t) = (f1(t), f2(t)), and time-dependent Hamiltonian H(t) has the
form

H(t) =

(
ε(t) V (t)
V (t) −ε(t)

)
(5)

where

ε(t) =
E0T + E1Ty

1 + y2
dy

dt
, V (t) =

V0T√
1 + y2

dy

dt

with some monotonically increasing differentiable function y : R → R sat-
isfying y(t) → ±∞ as t→ ±∞.

In this case equation (4) is reducible to a system of two hypergeometric
equations of the form

z(z − 1)
d2g

dz2
+ (γ − (1 + α + β)z)

dg

dz
− αβg(z) = 0 (6)

with appropriate constants α, β, γ.
The equation (6) is the two-dimensional case of (2) in which

A =

(
1− γ 1

(α− γ + 1)(γ − β − 1) γ − α− β − 1

)
and B =

(
0 0
0 1

)
.

It is known that, for every hypergeometric equation (6), there exists a Fuch-
sian system with the same singular points and the same monodromy. This
system has the form:

dF (z)

dz
=

(
0 0

−αβ γ

)
F (z)

z
+

(
0 1
0 γ − (α + β)

)
F (z)

z − 1
, (7)

where F (z) is a 2-dimensional vector function. Equation (6) and the system
(7) gives two parameter monodromy representation

ρα,β,γ : π1(CP1 \ {0, 1,∞}) → GL(2,C). (8)

Inverse problem, i.e, construct the system of the type (7) by monodromy
representation (8) provides the desired properties of the solutions of (4).

In a similar way (1) type equation can be reduced to the Heun equation

d2u

dt2
+

(
γ

t
+

δ

t− 1
+

ϵ

t− d

)
du

dt
+

αβt− q

t(t− 1)(t− d)
u = 0. (9)
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Here d ∈ C, is a parameter (d ̸= 0, 1), and α, β, γ, δ, ϵ ∈ C are exponent-
related parameters. The Riemann P -symbol is

P


0 1 d ∞
0 0 0 α ; t

1− γ 1− δ 1− ϵ β

 .

This does not uniquely specify the equation and its solutions, since it omits
the accessory parameter q ∈ C. The exponents are constrained by

α + β − γ − δ − ϵ+ 1 = 0. (10)

This is a special case of Fuchs’s relation, according to which the sum of the
2n characteristic exponents of any second-order Fuchsian equation on CP1

with n singular points must equal n− 2.
The canonical form of Fuchsian system of the form (9) with exponents

(0, 1/2), (0, 1/2), (0, 1/2) and (l/2,−(l + 1)/2) is the Lamé equation

y
′′
(x) +

1

2

(
1

x
+

1

x− 1
+

1

x− s

)
y

′
(x)− l(l + 1)x+ 4q

4x(x− 1)(x− s)
y(x) = 0. (11)

If α = 1, q = 1, or α = 0, q = 0 then the equation (9) reduces to the
hypergeometric equation.

2. Linear configuration of singular points of the equation

The motion of charged particles using time varying electric fields is de-
scribed by the Mathieu equation [10]:

w
′′
(τ) + (a− 2q cos(2τ))w(τ) = 0.

By the change of variable z = sin2τ or z = cos2τ we obtain the algebraic
form of the Mathieu equation:

z(1− z)w
′′
+

1

2
(1− 2z)w

′
+

1

4
(a− 2q(1− 2z))w = 0 (12)

or
(1− z2)w

′′ − zw
′
+ (a+ 2q − 4qz2)w = 0, (13)

respectively.
The equations (12),(13) are the confluence Heun’s equations and have

regular singularity at 0, 1 of equation (12) and at −1, 1 of equation (13)
both with exponents 0, 1

2
and irregular singular point at ∞.

The direct problem of electrostatics for the Coulomb potential

EQ =
∑
i ̸=j

qiqj
dij

, (14)

where dij is the distance between the points pi and pj (see [6], [9]) is the
following problem: given a compact conductor X and collection ofm positive
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numbers Q = (qi), find all equilibrium configurations of charges qi in X and
determine their types as critical points of the Coulomb potential EQ|Xm,
where Xm is the space of m different points in X.

Accordingly the inverse problem is the following [9]: given a finite con-
figuration P = (x1, ..., xm) of points in a fixed subset X, does there exist a
collection of nonzero real numbers Q = (q1, ..., qm), interpreted as values of
point charges, such that if they are placed at the points xj then the given
configuration is a critical point of Coulomb energy EQ restricted to Xm?

In [5] analyzed is the the inverse problem for the Coulomb potential.
Namely, the following model considered. Let N be the number of point
charges. Then the resultant force on qi in position xi corresponding to
potential (14) is given by

Fm =
qmt1
x2m

+
m−1∑
j=1

qmqj
(xm − xj)2

−
N∑

j=m+1

qmqj
(xj − xm)2

− qmt2
(L− xm)2

, m = 1, ..., N.

The relations
F1 = 0, F2 = 0, ..., FN = 0,

give a system of non-homogeneous linear equations

MQ = G, (15)

for unknowns q1, ..., qN , where

G =

(
t2

(L− x1)2
− t1
x21
,

t2
(L− x2)2

− t1
x22
, ...,

t2
(L− xN)2

− t1
x2N

)T

,

M = (mij)
N
i,j=1 is an antisymmetric matrix and mij = (−1)τij(xj − xi)

−2,
i ̸= j, τij = 0, if i > j; and τij = 1, if i < j. Therefore, the solution of the
system15 depends on the rank of the matrixM and from this inverse problem
reduces investigation of the system of polynomial equation detM=0.

Similarly can be considered the inverse problem for other type potentials
(Riesz, logarithmic and e.t.). Below we discuss some aspects of the inverse
problem for the logarithmic potential

E(x1, ...xn) = −q0
n∑

j=0

lg |p0 − xj| − ...− qm

n∑
j=0

lg |pm − xj−

−
∑

1≤i<j≤n

lg |xj − xi| (16)

and reduce this problem to the inverse problem from the analytic theory of
differential equations, in particular, on the monodromy problem for regular
equations.

Problem. (see [6]) For given pairs (p0, q0), ...(pm, qm), where p0 < ... <
pm, pj ∈ R, qj > 0, j = 1, ...,m and given monodromy representation

ρ : π1(CP1 \ {p0, ..., pm}, x0) → GL(2,C) (17)
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construct a generalized Lamé equation

y
′′
(x) +

m∑
j=0

qj
x− pj

y
′
(x) +

C(x)∏m
j=0(x− pj)

y(x) = 0, (18)

where C(x) is a polynomial of degree m − 2, such that the monodromy
representation of (17) coincides (18).

This is Riemann-Hilbert monodrmy problem (Hilbert’s 21 problem) for
regular equations with some restriction of coefficients. The solution of the
this problem in this form has, necessarily, apparent singularities besides the
given singularities S (see [2], [7]).

It is known that the number of parameters determining a Fuchsian equa-
tion of order p with n singular points is less than the dimension of the space
of monodromy representations, if p > 2, n > 2 or p = 2, n > 3. Hence in the
construction of a Fuchsian equation with the given monodromy there arise
the so-called apparent singularities at which the coefficients of the equation
have poles but the solutions are single-valued meromorphic functions, i. e.,
the monodromy matrices at these points are identity matrices.

Remark. In the general case, for the differential equation of n order
with m singular points (i.e. cardS = m, where S is a set of singular poits of
equation), the totality of representations of π1(M −S) to GL(n,C) and the
totality of the corresponding Fuchsian differential equations form complex
manifolds of dimension n2(m + 2g − 2) + 1, and (n2(m + 2g − 2)/2) +
(nm/2), respectively, where M is a compact Riemann surface of genus g.
The difference of these dimensions is equal to the number N of apparent
singular points

N = 1− n(1− g) +
n(n− 1)

2
(m+ 2g − 2), (m = #S)

when the monodromy representation is irreducible [2].
We consider the particular case of the above mentioned problem.
Proposition 1. Let given pairs (−1, q0), (1, q1) and irreducible mon-

odromy representation

ρ : π1(CP1 \ {−1, 1,∞}) → GL(2,C).

Suppose α = 2q1 − 1 and β = 2q0 − 1 are positive numbers. Then the
monodromy representation of the differential equation

(1− x2)y
′′
+ (β − α− (α + β + 2)x)y

′
+ γy = 0, (19)

where γ is a constant, coincides with ρ.
Indeed, Riemann-Hilbert monodrmy problem is solvable for the second

order Fuchsian system without accessory parameters if and only if the num-
ber of singular points is equal to 3. The irreducibily properties of the rep-
resentation ρ garanties existence of the numbers α > −1, β > −1 such that
α = 2q1 − 1 and β = 2q0 − 1.
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Proposition 2. If γ = n(n+α+β+1) for some natural n = 1, 2, 3, ...,
then equation (19) has polynomial solution Pα,β

n (x) of degree n.
Polynomial functions Pα,β

n (x) from Proposition 2 are Jacobi polynomials
of degree n and the proof of proposition directly follows from main properties
of Jacobi polynomials [12].

P
(α,β)
n (x) can be the given explicitly by the expression

P (α,β)
n (x) =

1

2

n∑
j=0

(n+ α)!

(n− j)!

(n+ β)!

j!
(x− 1)j(x+ 1)n−j.

From the Rodrigues formula

P (α,β)
n (x) =

1

2nn!
(x− 1)−α(x+ 1)−β

(
d

dx

)n

[(x− 1)n+α(x+ 1)n+β]

it follows, that P
(α,β)
n (x) are analytic functions of the parameters α, β ∈ C.

The roots x1, ..., xn of the equation P
(α,β)
n (x) = 0 are real, satisfy inequalities

−1 < x1 < x2 < ... < xn < 1 and are analytic as functions α, β. Besides,
∂xj

∂α
> 0 and

∂xj

∂β
< 0, j = 1, ..., n [1].

In this situation the potential (16) takes the form

E(x1, ...xn) = −q0
n∑

j=0

lg |1−xj|−q1
n∑

j=0

lg |1−xj|−
∑

1≤i<j≤n

lg |xj−xi|. (20)

The stationary points of E satisfy the system of equations

q0
1 + xj

− q1
1− xj

−
∑

1≤i<j≤n

1

xj − xi
= 0, i, j = 1, ..., n, i ̸= j

and coincide with roots of Jacobi polynomials.
The above mentioned mathematical formalism is description of the elec-

trostatic model of m unit point charges on line (see [1], [12]).
Let two positive fixed charges of mass β+1

2
and α+1

2
at −1 and +1,

respectively and allow m positive unit charges X = {x1, ..., xm} to move
freely in (−1, 1). The total energy E(X) of this system if the interaction
obeys the logarhitmic potential law is equal to

E(X) = Eint + Eext,

where
Eint = −

∑
1≤k≤j≤n

ln |xk − xj|,

and

Eext =
n∑

k=1

φ(xk)
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with the external field φ(x) created by the fixed charges:

φ(x) = −β + 1

2
ln |x+ 1| − α + 1

2
ln |x− 1|. (21)

Then there exists a unique configuration X∗ = {x∗1, ..., x∗m} providing
the global minimum of E(X) in [−1, 1]m, corresponding to the unique equi-
librium position for given free charges, and the points x∗j are the zeros of

the polynomial P
(α,β)
n .

The critical points of the energy functional E(X) as the function of xj
are the solutions of the equation

∂

∂xk
E(X) = 0.

Suppose X∗ is a critical configuration, then

∂

∂xk
Eint(X)|X=X∗ + φ

′
(xk) = 0 (22)

Suppose y(x) = (x−x∗1)(x−x∗2)...(x−x∗n) is a monic polynomial with zeros
at x∗k’s, then

∂

∂xk
Eint(X)|X=X∗ = −

∑
1≤j≤n,j ̸=k

1

x∗k − x∗j
= −1

2

y
′′
(x∗k)

y′(x∗k)

and

φ
′
(x) = − β + 1

2(x+ 1)
− α + 1

2(x− 1)
.

From (22) we obtain

y
′′
(x) +

(
β + 1

x+ 1
+
α + 1

x− 1

)
y

′
= 0 (23)

for all x ∈ X∗.
From equation (23) we obtain that the polynomial

(1− x2)y
′′
(x) + (x(α + β + 2) + (α− β))y

′

of degree n is equal to zero at the zeros of polynomial y(x) and therefore
equal to const× y(x). Denote by γ this constant, we obtain a second order
differential equation (19) (see [12]).

Finally we remark, that if we return to equation (4) we obtain the
Shrödinger equation depending on parameters [11]. We consider these pa-
rameters as control parameters. The problem of this type arises for the
generate universal set of quantum gates for quantum processor [3-4], [11] or
to obtain necessary configuration of ion in trap ions technology [8].
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