Proceedings of I. Vekua Institute of Applied Mathematics
Vol. 69, 2019

ON THE SPECIAL CASE OF THE BOUNDARY VALUE PROBLEM FOR THE CARLEMAN-BERS-VEKUA EQUATION

Jikia V.

Abstract

In this paper the special case of the Rieman-Hilbert boundary value problem (problem of linear conjugation) for the Carleman-Bers-Vekua equation is obtained, when the transition function $G(t)$, given on the boundary curve Γ has the zeros and poles on Γ. The necessary and sufficient condition of solvability is obtained and an explicit formula is given for the solution of this problem.

Keywords and phrases: Carleman-Bers-Vekua equation, problem of linear conjugation, index.

AMS subject classification (2010): 30C62.
In this paper we continue the investigation of special cases of Carleman-BersVekua equation [1] and related boundary value problems.

Consider the Carleman-Bers-Vekua equation

$$
\begin{equation*}
w_{\bar{z}}+A w+B \bar{w}=0 . \quad A, B \in L_{p}(\mathbb{C}), p>2 . \tag{1}
\end{equation*}
$$

Let D be a domain in \mathbb{C}. Denote by $U_{p, 2}(A, B, D)$ the space of regular solutions of (1) in D. This is a vector space over reals.

Let Γ be a closed curve in \mathbb{C} with interior D^{+}and exterior D^{-}. Suppose $G_{1}(t), g(t)$ are defined on Γ functions of class $C_{\alpha}(\Gamma), 0<\alpha \leq 1$ and $G_{1}(t) \neq 0$ everywhere on Γ. Denote by $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}, \beta_{1}, \beta_{2}, \ldots, \beta_{n}$ marked points on Γ and denote by $m_{1}, m_{2}, \ldots, m_{l}, p_{1}, p_{2}, \ldots, p_{n}$ the nonnegative integers.

Consider the following boundary value problem:
Find piecewise regular solutions of (1) which satisfy the following boundary value conditions:

$$
\begin{align*}
W^{+}(t) & =G_{1}(t) W^{-}(t)+g(t) \tag{2}\\
W(z) & =O\left(z^{N}\right), \quad z \rightarrow \infty, \tag{3}
\end{align*}
$$

where N is a given integer and

$$
G(t)=\frac{\Pi_{k=1}^{l}\left(t-\alpha_{k}\right)^{m_{k}}}{\prod_{k=1}^{n}\left(t-\beta_{k}\right)^{p_{k}}} G_{1}(t), \quad t \neq \beta_{k}, \quad k=1, \ldots, l, \quad t \in \Gamma .
$$

The point $\alpha_{k} \in \Gamma$ is called zero of the function $G(t)$, order m_{k} with respect to $t-\alpha_{k}$. Similarly, β_{k} is called a pole of $G(t)$ of order p_{k}.

The spatial inhomogeneous problem of linear conjugation was studied in [2] for piecewise analytic functions.

Suppose $X(z)$ is a canonical solution in class of piecewise analytic functions of the following boundary value problem:

$$
\begin{equation*}
X^{+}(t)=G_{1}(t) X^{-}(t), \quad t \in \Gamma . \tag{4}
\end{equation*}
$$

Consider the following Carlemann-Bers-Vekua equation

$$
\begin{equation*}
V_{\bar{z}}+A V+B_{1} \bar{V}=0, \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& B_{1}(z)=B(z) \frac{\overline{X(z)} \Pi_{k=1}^{n}\left(z-\beta_{k}\right)^{p_{k}}}{X(z) \Pi_{k=1}^{n}\left(\bar{z}-\bar{\beta}_{k}\right)^{p_{k}}}, \quad z \in D^{+}, \\
& B_{1}(z)=B(z) \frac{\overline{X(z)} \Pi_{k=1}^{l}\left(z-\alpha_{k}\right)^{m_{k}}}{X(z) \Pi_{k=1}^{l}\left(\bar{z}-\bar{\beta}_{k}\right)^{m_{k}}}, \quad z \in D^{-} .
\end{aligned}
$$

It is clear, that $B_{1} \in L_{p, 2}(\mathbb{C})$.
Let $\Omega_{1}(z, t)$ and let $\Omega_{2}(z, t)$ be main kernels of class $U_{p, 2}\left(A, B_{1}, \mathbb{C}\right)$ and let

$$
\begin{equation*}
V_{2 k}=R_{\infty}^{-A,-\bar{B}_{1}}\left(z^{k}\right), \quad V_{2 k+1}=R_{\infty}^{-A,-\bar{B}_{1}}\left(i z^{k}\right), \quad k=0,1,2, \ldots \tag{6}
\end{equation*}
$$

be generalized power functions [1] of class $U_{p, 2}\left(A,-\bar{B}_{1}, \mathbb{C}\right)$.
Consider conjugate to (5) equation

$$
\begin{equation*}
U_{\bar{z}}-A U-B_{1} \bar{U}=0 \tag{7}
\end{equation*}
$$

Suppose

$$
\chi=\frac{1}{2 \pi}\left[\arg G_{1}(t)\right]_{\Gamma}
$$

and

$$
\sum_{k=1}^{l} m_{k}=m
$$

Theorem 1. Let $\chi+N+m \geq-1$. Then the general solution of problem (1), (2), (3) is

$$
\begin{gather*}
W(z)=\frac{1}{\Pi_{k=1}^{n}\left(z-\beta_{k}\right)^{p_{k}}} \times \tag{8}\\
\left(\frac{X(z)}{2 \pi i} \int_{\Gamma} \Omega_{1}(z, t) \frac{g(t)}{X^{+}(t)} d t-\Omega_{2}(z, t) \frac{\overline{g(t)}}{\overline{X^{+}(t)}} d \bar{t}+X(z) Q_{\chi+N+m}(z)\right), \quad z \in D^{+} \\
W(z)=\frac{1}{\Pi_{k=1}^{l}\left(z-\alpha_{k}\right)^{p_{k}}} \times \tag{9}\\
\left(\frac{X(z)}{2 \pi i} \int_{\Gamma} \Omega_{1}(z, t) \frac{g(t)}{X^{+}(t)} d t-\Omega_{2}(z, t) \frac{\overline{g(t)}}{\overline{X^{+}(t)}} d \bar{t}+X(z) Q_{\chi+N+m}(z)\right), \quad z \in D^{-}
\end{gather*}
$$

where $Q_{\chi+N+m}(z)$ is a generalized polynomial of class $U_{p, 2}\left(A, B_{1}, \mathbb{C}\right)$ of degree at most $\chi+N+m$, and $Q_{-1}=0$ by definition.

Proof. From (4) we have

$$
\begin{equation*}
G_{1}(t)=\frac{X^{+}(t)}{X^{-}(t)} \tag{10}
\end{equation*}
$$

After the setting (10) in (2) we obtain

$$
\begin{equation*}
\Pi_{k=1}^{n}\left(t-\beta_{k}\right)^{p_{k}} W^{+}(t) \tag{11}
\end{equation*}
$$

$$
=\Pi_{k=1}^{l}\left(t-\alpha_{k}\right)^{m_{k}} \frac{X^{+}(t)}{X^{-}(t)} W^{-}(t)+g(t), \quad t \in \Gamma .
$$

From (11) it follows that

$$
\begin{gather*}
\Pi_{k=1}^{n}\left(t-\beta_{k}\right)^{p_{k}} \frac{W^{+}(t)}{X^{+}(t)} \tag{12}\\
=\Pi_{k=1}^{l}\left(t-\alpha_{k}\right)^{m_{k}} \frac{X^{+}(t)}{X^{-}(t)} W^{-}(t)+\frac{g(t)}{X^{+}(t)}, t \in \Gamma .
\end{gather*}
$$

Consider the following function

$$
\begin{align*}
& V(z)=\Pi_{k=1}^{n}\left(z-\beta_{k}\right)^{p_{k}} \frac{W(z)}{X(z)}, \quad z \in D^{+}, \tag{13}\\
& V(z)=\Pi_{k=1}^{l}\left(z-\alpha_{k}\right)^{m_{k}} \frac{W(z)}{X(z)}, \quad z \in D^{-} . \tag{14}
\end{align*}
$$

From (1), (13), (14) it follows, that V satisfies equation (5) in domains D^{+}and D^{-}, therefore

$$
\begin{equation*}
V \in U_{p, 2}\left(A, B_{1}, D^{+}\right) \quad V \in U_{p, 2}\left(A, B_{1}, D^{-}\right) . \tag{15}
\end{equation*}
$$

From (12), (13), (14) we obtain

$$
\begin{equation*}
V^{+}(t)=V^{-}(t)+\frac{g(t)}{X^{+}(t)}, \quad t \in \Gamma . \tag{16}
\end{equation*}
$$

Consider the generalized Cauchy type integral of class $U_{p, 2}\left(A, B_{1}, \mathbb{C}\right)$:

$$
h(z)=\frac{1}{2 \pi i} \int_{\Gamma} \Omega_{1}(z, \zeta) \frac{g(\zeta)}{X^{+}(\zeta)} d \zeta-\Omega_{2}(z, \zeta) \frac{\overline{g(\zeta)}}{\overline{X^{+}(\zeta)}} d \bar{\zeta}, z \in D^{+}, \quad z \in D^{-} .
$$

Since $\frac{g}{X^{+}} \in C_{\alpha}(\Gamma), 0<\alpha \leq 1$ then due to Sokhotski-Plemelj theorem formula we have

$$
\begin{equation*}
h^{+}(t)=h^{-}(t)+\frac{g(t)}{X^{+}(t)}, t \in \Gamma . \tag{17}
\end{equation*}
$$

Difference of expressions (16) and (17) gives

$$
\begin{equation*}
(V(t)-h(t))^{+}=(V(t)-h(t))^{-}, \quad t \in \Gamma \tag{18}
\end{equation*}
$$

As it is known, h is the solution of equation (5) in the domains D^{+}and D^{-}:

$$
\begin{equation*}
h \in U_{p, 2}\left(A, B_{1}, D^{+}\right), \quad h \in U_{p, 2}\left(A, B_{1}, D^{-}\right) \tag{19}
\end{equation*}
$$

From (15) and (19) it follows that $V-h$ is a solution of (5) in domains D^{+} and D^{-}:

$$
\begin{equation*}
V-h \in U_{p, 2}\left(A, B_{1}, D^{+}\right), \quad V-h \in U_{p, 2}\left(A, B_{1}, D^{-}\right) . \tag{20}
\end{equation*}
$$

From (18) follows, that $V-h$ is continuous on \mathbb{C}, therefore

$$
\begin{equation*}
V-h \in C(\mathbb{C}) . \tag{21}
\end{equation*}
$$

From the continuity properties of generalized analytic functions and from inclusions (20) and (21) it follows, that $V-h$ is a regular solution of equation (5) on \mathbb{C} :

$$
\begin{gather*}
V-h \in U_{p, 2}\left(A, B_{1}, \mathbb{C}\right) \tag{22}\\
X(z)=O\left(z^{-\chi}\right), \quad z \rightarrow \infty, \frac{1}{X(z)}=O\left(z^{\chi}\right), \quad z \rightarrow \infty
\end{gather*}
$$

and

$$
\begin{equation*}
\Pi_{k=1}^{l}\left(z-\alpha_{k}\right)^{m_{k}}=O\left(z^{m}\right), \quad z \rightarrow \infty . \tag{23}
\end{equation*}
$$

From (3), (14), (23) it follows that

$$
\begin{equation*}
V(z)=O\left(z^{\chi+N+m}\right), \quad z \rightarrow \infty . \tag{24}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
h(z)=O\left(z^{-1}\right), \quad z \rightarrow \infty . \tag{25}
\end{equation*}
$$

Since $\chi+N+m \geq-1$ from (25) it follows that

$$
\begin{equation*}
h(z)=O\left(z^{\chi+N+m}\right), \quad z \rightarrow \infty . \tag{26}
\end{equation*}
$$

From (24) and (26) we obtain

$$
\begin{equation*}
V(z)-H(z)=O\left(z^{\chi+N+m}\right), \quad z \rightarrow \infty . \tag{27}
\end{equation*}
$$

Due to Loiuville theorem for generalized analytic functions from (22) and (27) it follows that $V-h$ is a generalized polynomial $Q_{\chi+N+m}$ of degree at most $\chi+N+m$ of class $U_{p, 2}\left(A, B_{1}, \mathbb{C}\right)$. Therefore,

$$
\begin{equation*}
V(z)-h(z)=Q_{\chi+N+m}(z), \quad z \in \mathbb{C} . \tag{28}
\end{equation*}
$$

From (28) we obtain

$$
\begin{equation*}
V(z)=h(z)+Q_{\chi+N+m}(z), \quad z \in D^{+}, \quad z \in D^{-} . \tag{29}
\end{equation*}
$$

Let $z \in D^{+}$, then from (13) and (29) it follows that

$$
\begin{equation*}
\Pi_{k=1}^{n}\left(z-\beta_{k}\right)^{p_{k}} \frac{W(z)}{X(z)}=h(z)+Q_{\chi+N+m}(z) . \tag{30}
\end{equation*}
$$

From (30) we obtain

$$
\begin{equation*}
W(z)=\frac{1}{\Pi_{k=1}^{n}\left(z-\beta_{k}\right)^{p_{k}}}\left(X(z) h(z)+X(z) Q_{\chi+N+m}(z)\right) . \tag{31}
\end{equation*}
$$

Therefore, we obtained identity (8) from the theorem. Let $z \in D^{-}$. Then from(14) and (29) it follows that

$$
\begin{equation*}
\Pi_{k=1}^{l}\left(z-\alpha_{k}\right)^{m_{k}} \frac{W(z)}{X(z)}=h(z)+Q_{\chi+N+m}(z) . \tag{32}
\end{equation*}
$$

From (32) we obtain

$$
\begin{equation*}
W(z)=\frac{1}{\Pi_{k=1}^{l}\left(z-\alpha_{k}\right)^{m_{k}}}\left(X(z) h(z)+X(z) Q_{\chi+N+m}(z)\right) \tag{33}
\end{equation*}
$$

This is expression (9) from Theorem 1.
Theorem 2. Let $\chi+N+m \neq-2$. The necessary and sufficient conditions for solvability of the problem (1), (2), (3) are the following identities

$$
\begin{equation*}
\Im \int_{\Gamma} V_{k} \frac{g(t)}{X^{+}(t)} d t=0, \quad k=0,1,2, \ldots, 2(-\chi-N-m)-3 \tag{34}
\end{equation*}
$$

If conditions are satisfied, then the solution of problem (1), (2), (3) is

$$
\begin{gather*}
W(z)=\frac{1}{\Pi_{k=1}^{n}\left(z-\beta_{k}\right)^{p_{k}}} \tag{35}\\
\times\left(\frac{X(z)}{2 \pi i} \int_{\Gamma} \Omega_{1}(z, t) \frac{g(t)}{X^{+}(t)} d t-\Omega_{2}(z, t) \frac{\overline{g(t)}}{\overline{X^{+}(t)}} d \bar{t}+X(z) Q_{\chi+N+m}(z)\right), \quad z \in D^{+}, \\
W(z)=\frac{1}{\Pi_{k=1}^{l}\left(z-\alpha_{k}\right)^{p_{k}}} \tag{36}\\
\times\left(\frac{X(z)}{2 \pi i} \int_{\Gamma} \Omega_{1}(z, t) \frac{g(t)}{X^{+}(t)} d t-\Omega_{2}(z, t) \frac{\overline{g(t)}}{\overline{X^{+}(t)}} d \bar{t}+X(z) Q_{\chi+N+m}(z)\right), \quad z \in D^{-} .
\end{gather*}
$$

Proof. Since $\chi+N+m \geq-2$ from (24) we have

$$
\begin{equation*}
V(z)=O\left(z^{-2}\right), \quad z \rightarrow \infty . \tag{37}
\end{equation*}
$$

From (25), (36) it follows that

$$
\begin{equation*}
V(z)-h(z)=O\left(z^{-1}\right), \quad z \rightarrow \infty . \tag{38}
\end{equation*}
$$

Due to Liouville theorem, (22) and (38) we have

$$
V(z)-h(z)=0, \quad z \in \mathbb{C} .
$$

Therefore,

$$
\begin{equation*}
V(z)=h(z), \quad z \in D^{+}, \quad z \in D^{-} . \tag{39}
\end{equation*}
$$

From (13), (14), (39) follows (35) and (36). From (24) and (39) it follows that

$$
\begin{equation*}
h(z)=O\left(z^{\chi+N+m}\right), \quad z \rightarrow \infty . \tag{40}
\end{equation*}
$$

The condition (40) is satisfied if and only if (34) is satisfied. This completes the proof.

Acknowledgement. This research has been supported by Shota Rustaveli National Science Foundation (Grant FR/17-96).

REFERENCES

1. Akhalaia G., Giorgadze G., Jikia V., Kaldani N., Makatsaria G., Manjavidze N. Elliptic systems on Riemann surfaces. Lecture Notes of TICMI, TSU Press, 13 (2012), 3-167.
2. Gakhov F.D. Boundary Value Problems. Dover Publ. Inc., 1990.

Received 26.12.2019; accepted 28.12.2019.
Author's address:
V. Jikia
I. Vekua Institute of Applied Mathematics
of I. Javakhishvili Tbilisi State University
2, University str., Tbilisi 0186
Georgia
E-mail: valerian.jikia@tsu.viam.ge

