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ON THE SPECIAL CASE OF THE BOUNDARY VALUE PROBLEM
FOR THE CARLEMAN-BERS-VEKUA EQUATION

Jikia V.

Abstract. In this paper the special case of the Rieman-Hilbert boundary value
problem (problem of linear conjugation) for the Carleman-Bers-Vekua equation
is obtained, when the transition function G(t), given on the boundary curve Γ
has the zeros and poles on Γ. The necessary and sufficient condition of solvability
is obtained and an explicit formula is given for the solution of this problem.
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In this paper we continue the investigation of special cases of Carleman-Bers-
Vekua equation [1] and related boundary value problems.

Consider the Carleman-Bers-Vekua equation

wz +Aw +Bw = 0. A,B ∈ Lp(C), p > 2. (1)

LetD be a domain in C.Denote by Up,2(A,B,D) the space of regular solutions
of (1) in D. This is a vector space over reals.

Let Γ be a closed curve in C with interior D+ and exterior D−. Suppose
G1(t), g(t) are defined on Γ functions of class Cα(Γ), 0 < α ≤ 1 and G1(t) ̸= 0
everywhere on Γ. Denote by α1, α2, ..., αl, β1, β2, ..., βn marked points on Γ and
denote by m1,m2, ...,ml, p1, p2, ..., pn the nonnegative integers.

Consider the following boundary value problem:

Find piecewise regular solutions of (1) which satisfy the following boundary
value conditions:

W+(t) = G1(t)W
−(t) + g(t) (2)

W (z) = O(zN ), z → ∞, (3)

where N is a given integer and

G(t) =
Πl

k=1(t− αk)
mk

Πn
k=1(t− βk)pk

G1(t), t ̸= βk, k = 1, ..., l, t ∈ Γ.

The point αk ∈ Γ is called zero of the function G(t), order mk with respect
to t− αk. Similarly, βk is called a pole of G(t) of order pk.

The spatial inhomogeneous problem of linear conjugation was studied in [2]
for piecewise analytic functions.

Suppose X(z) is a canonical solution in class of piecewise analytic functions
of the following boundary value problem:

X+(t) = G1(t)X
−(t), t ∈ Γ. (4)
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Consider the following Carlemann-Bers-Vekua equation

Vz̄ +AV +B1V = 0, (5)

where

B1(z) = B(z)
X(z)Πn

k=1(z − βk)
pk

X(z)Πn
k=1(z̄ − β̄k)pk

, z ∈ D+,

B1(z) = B(z)
X(z)Πl

k=1(z − αk)
mk

X(z)Πl
k=1(z̄ − β̄k)mk

, z ∈ D−.

It is clear, that B1 ∈ Lp,2(C).
Let Ω1(z, t) and let Ω2(z, t) be main kernels of class Up,2(A,B1,C) and let

V2k = R−A,−B1
∞ (zk), V2k+1 = R−A,−B1

∞ (izk), k = 0, 1, 2, ... (6)

be generalized power functions [1] of class Up,2(A,−B1,C).
Consider conjugate to (5) equation

Uz̄ −AU −B1U = 0. (7)

Suppose

χ =
1

2π
[argG1(t)]Γ

and
l∑

k=1

mk = m.

Theorem 1. Let χ+N +m ≥ −1. Then the general solution of problem (1),
(2), (3) is

W (z) =
1

Πn
k=1(z − βk)pk

× (8)(
X(z)

2πi

∫
Γ
Ω1(z, t)

g(t)

X+(t)
dt− Ω2(z, t)

g(t)

X+(t)
dt̄+X(z)Qχ+N+m(z)

)
, z ∈ D+,

W (z) =
1

Πl
k=1(z − αk)pk

× (9)(
X(z)

2πi

∫
Γ
Ω1(z, t)

g(t)

X+(t)
dt− Ω2(z, t)

g(t)

X+(t)
dt̄+X(z)Qχ+N+m(z)

)
, z ∈ D−,

where Qχ+N+m(z) is a generalized polynomial of class Up,2(A,B1,C) of degree at
most χ+N +m, and Q−1 = 0 by definition.

Proof. From (4) we have

G1(t) =
X+(t)

X−(t)
. (10)

After the setting (10) in (2) we obtain

Πn
k=1(t− βk)

pkW+(t) (11)
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= Πl
k=1(t− αk)

mk
X+(t)

X−(t)
W−(t) + g(t), t ∈ Γ.

From (11) it follows that

Πn
k=1(t− βk)

pk
W+(t)

X+(t)
(12)

= Πl
k=1(t− αk)

mk
X+(t)

X−(t)
W−(t) +

g(t)

X+(t)
, t ∈ Γ.

Consider the following function

V (z) = Πn
k=1(z − βk)

pk
W (z)

X(z)
, z ∈ D+, (13)

V (z) = Πl
k=1(z − αk)

mk
W (z)

X(z)
, z ∈ D−. (14)

From (1), (13), (14) it follows, that V satisfies equation (5) in domains D+ and
D−, therefore

V ∈ Up,2(A,B1, D
+) V ∈ Up,2(A,B1, D

−). (15)

From (12), (13), (14) we obtain

V +(t) = V −(t) +
g(t)

X+(t)
, t ∈ Γ. (16)

Consider the generalized Cauchy type integral of class Up,2(A,B1,C) :

h(z) =
1

2πi

∫
Γ
Ω1(z, ζ)

g(ζ)

X+(ζ)
dζ − Ω2(z, ζ)

g(ζ)

X+(ζ)
dζ, z ∈ D+, z ∈ D−.

Since g
X+ ∈ Cα(Γ), 0 < α ≤ 1 then due to Sokhotski-Plemelj theorem formula

we have

h+(t) = h−(t) +
g(t)

X+(t)
, t ∈ Γ. (17)

Difference of expressions (16) and (17) gives

(V (t)− h(t))+ = (V (t)− h(t))−, t ∈ Γ. (18)

As it is known, h is the solution of equation (5) in the domains D+ and D−:

h ∈ Up,2(A,B1, D
+), h ∈ Up,2(A,B1, D

−). (19)

From (15) and (19) it follows that V − h is a solution of (5) in domains D+

and D− :

V − h ∈ Up,2(A,B1, D
+), V − h ∈ Up,2(A,B1, D

−). (20)

From (18) follows, that V − h is continuous on C, therefore

V − h ∈ C(C). (21)
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From the continuity properties of generalized analytic functions and from inclu-
sions (20) and (21) it follows, that V − h is a regular solution of equation (5) on
C :

V − h ∈ Up,2(A,B1,C) (22)

X(z) = O(z−χ), z → ∞,
1

X(z)
= O(zχ), z → ∞

and
Πl

k=1(z − αk)
mk = O(zm), z → ∞. (23)

From (3), (14), (23) it follows that

V (z) = O(zχ+N+m), z → ∞. (24)

It is clear that
h(z) = O(z−1), z → ∞. (25)

Since χ+N +m ≥ −1 from (25) it follows that

h(z) = O(zχ+N+m), z → ∞. (26)

From (24) and (26) we obtain

V (z)−H(z) = O(zχ+N+m), z → ∞. (27)

Due to Loiuville theorem for generalized analytic functions from (22) and (27)
it follows that V − h is a generalized polynomial Qχ+N+m of degree at most
χ+N +m of class Up,2(A,B1,C). Therefore,

V (z)− h(z) = Qχ+N+m(z), z ∈ C. (28)

From (28) we obtain

V (z) = h(z) +Qχ+N+m(z), z ∈ D+, z ∈ D−. (29)

Let z ∈ D+, then from (13) and (29) it follows that

Πn
k=1(z − βk)

pk
W (z)

X(z)
= h(z) +Qχ+N+m(z). (30)

From (30) we obtain

W (z) =
1

Πn
k=1(z − βk)pk

(X(z)h(z) +X(z)Qχ+N+m(z)). (31)

Therefore, we obtained identity (8) from the theorem. Let z ∈ D−. Then from(14)
and (29) it follows that

Πl
k=1(z − αk)

mk
W (z)

X(z)
= h(z) +Qχ+N+m(z). (32)

From (32) we obtain

W (z) =
1

Πl
k=1(z − αk)mk

(X(z)h(z) +X(z)Qχ+N+m(z)) (33)
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This is expression (9) from Theorem 1.
Theorem 2. Let χ +N +m ̸= −2. The necessary and sufficient conditions

for solvability of the problem (1), (2), (3) are the following identities

ℑ
∫
Γ
Vk

g(t)

X+(t)
dt = 0, k = 0, 1, 2, ..., 2(−χ−N −m)− 3. (34)

If conditions are satisfied, then the solution of problem (1), (2), (3) is

W (z) =
1

Πn
k=1(z − βk)pk

(35)

×

(
X(z)

2πi

∫
Γ
Ω1(z, t)

g(t)

X+(t)
dt− Ω2(z, t)

g(t)

X+(t)
dt̄+X(z)Qχ+N+m(z)

)
, z ∈ D+,

W (z) =
1

Πl
k=1(z − αk)pk

(36)

×

(
X(z)

2πi

∫
Γ
Ω1(z, t)

g(t)

X+(t)
dt− Ω2(z, t)

g(t)

X+(t)
dt̄+X(z)Qχ+N+m(z)

)
, z ∈ D−.

Proof. Since χ+N +m ≥ −2 from (24) we have

V (z) = O(z−2), z → ∞. (37)

From (25), (36) it follows that

V (z)− h(z) = O(z−1), z → ∞. (38)

Due to Liouville theorem, (22) and (38) we have

V (z)− h(z) = 0, z ∈ C.

Therefore,
V (z) = h(z), z ∈ D+, z ∈ D−. (39)

From (13), (14), (39) follows (35) and (36). From (24) and (39) it follows that

h(z) = O(zχ+N+m), z → ∞. (40)

The condition (40) is satisfied if and only if (34) is satisfied. This completes
the proof.
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