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ON THE CAUCHY INTEGRALS WITH THE WEIERSTRAß KERNEL

Nino Khatiashvili

Abstract. In the work the integral with the Weierstraß kernel and its properties
is considered. Some problems of hydrodynamics associated with this integral are
presented. Linear and nonlinear singular integral equations with the Weierstraß
kernel arising in planar problems of hydrodynamics are given. The results of the
author connected with the linear singular integral equation with the Weierstraß
kernel are discussed. The properties of solutions of the nonlinear singular integral
equation with the Weierstraß kernel associated with the Planar Stokes waves are
analyzed. The sufficient condition of the existence of solutions of these non-linear
integral equation is obtained.
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1. Introduction

The work deals with the integrals with the Weierstraß kernel and their appli-
cations.

In a complex z-plane (z = x + iy) we consider the integral of the following
type

W (z) =
1

2πi

∫

L0

φ(t)ζ(t− z)dt, (1)

where L0 is a piece-wise smooth line [1], ζ is the Weierstraß zeta-function [2, 3,
4], φ(t) is the function of Muskhelishvili-Kveselava H∗ class [1]

Definition 1. If the function φ(t) given on L0 , satisfies the Hölder condition
on every closed part of L0 not containing the finite number of points ci (i=1,2,...,p)
of L0, and if at those points the following condition holds

φ(t) =
φ∗(t)

(t− ci)α
, 0 < α < 1,

where φ∗(t) ∈ H on L0, then φ(t) will be said to belong to the class H∗ on L0.
If (t− ci)εφ(t) is Hölder continuous near the point ci for any arbitrary small

ε > 0 then φ(t) is sad to belong to the class H∗
ε .

We now recall some definitions from the theory of elliptic functions.
Definition 2. Weierstraß zeta-function is the quasi-periodic function given

by the double series

ζ(z) =
1
z

+
∞∑

|m|+|n|6=0
m,n=−∞

(
1

z − Tmn
+

1
Tmn

+
z

T 2
mn

)
, Tmn = 2mω1 + 2niω2, (2)

ω1 and ω2 are the given complex numbers satisfying the condition
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Im

(
iω2

ω1

)
> 0.

The series (2) converges uniformly in every closed region of z-plane not con-
taining the points Tmn.

The Weierstraß zeta-function has the following properties:
1) It is a meromorphic function with the simple poles Tmn

m,n = 0,±1,±2, . . . ,
2) ζ(−z) = −ζ(z),
3) ζ(z) is a double quasi-periodic function i.e.,

ζ(z + 2ω1) = ζ(z) + δ1, ζ(z + 2iω2) = ζ(z) + δ2,

where δ1 and δ2 are the addends of the zeta-function

δ1 = 2ζ(ω1), δ2 = 2ζ(iω2), iω2δ1 − ω1δ2 = πi,

4) [lnσ(z)]′ = ζ(z), where σ(z) is the Weierstraß sigma-function.
5) Zeta-function is represented by the series [2, 3, 4]

ζ(z) =
δ1z

2ω1
+

π

2ω1
ctg

πz

2ω1
+

2π

ω1
Σ∞r=1

h2r

1− h2r
sin

rπz

ω1
, (3)

where h = exp −πω2
ω1

.
Definition 3. Weierstraß sigma-function is the holomorphic function defined

as the following infinite product [2, 3, 4]

σ(z) = z
∞∏

|m|+|n|6=0
m,n=−∞

(
1− z

Tmn

)
exp

( 1
Tmn

+
z2

2T 2
mn

)
, (4)

σ- function is the holomorphic function with the simple zeros at the points
Tmn, m, n = ±1,±2, · · · and has the following properties

1. σ(z + 2ω1) = −σ(z) exp(δ1z + δ1ω1),

2. σ(z + 2iω2) = −σ(z) exp(δ2z + iδ2ω2),

3. σ(z) = sin
πz

2ω1
exp

[
δ1

4ω1
(z2 − ω2

1)
] ∞∏

r=1

exp
[
−2

r

h2r

(1− h2r)
cos

rπz

ω1

]
. (5)

σ-function is not doubly quasi-periodic, but by means of it any elliptic func-
tion can be constructed [2, 3, 4].

Theorem 1. Every elliptic function F(z) of n-th order with zeros α2, ..., αn

and poles β1, β2, ..., βn in the fundamental parallelogram (parallologram with the
vertices 0, 2ω1, 2ω1 + 2iω2, 2iω2) can be represented in the form

F (z) = C0
σ(z − α1)σ(z − α2)...σ(z − αn)
σ(z − β1)σ(z − β2)...σ(z − βn)

, (6)

where α1 = (β1 + β2 + ... + βn)− (α2 + ... + αn), C0 is the definite constant.
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According to formula (2) the function given by (1) represents the Cauchy type
integral and is the sectionally holomorphic double quasi-periodic function with
the jump line L [5-10], where L is a union of a countable number of smooth non-
intersected contours Lj

mn; j = 1, 2, . . . , k; m,n = 0,±1,±2, . . . double-periodically
distributed in the z-plane with periods 2ω1 and 2iω2

L =
∞⋃

m,n=−∞
Lmn, L00 = L0,

Lmn =
k⋃

j=1

Lj
mn, Lj1

mn

⋂
Lj2

mn = Ø, j1 6= j2, j1, j2 = 1, 2, . . . , k.

The integral (1) has various applications in double-quasi periodic problems
of hydrodynamics [5, 7, 11, 12].

The properties of the integral (1) was first studied by Sedov [5]. He has
studied the following boundary value problem arising in planar hydrodynamics

Problem 1. In the stripe 0 < y < ω2 find a periodic analytic function F (z)
with the period 2ω1, satisfying the boundary conditions

ImF (z)|y=0 = v1; ImF (z)|y=ω2 = v2; 0 < x < 2ω1,

where v1 and v2 are the given functions of the Hölder class subject to the condition
∫ iω2+2ω1

iω2

v2(t)dt =
∫ 2ω1

0
v1(t)dt.

By the modification of Villat’s formula [13] Sedov has obtained the solution
of Problem 1

F (z) =
1
π

∫ iω2+2ω1

iω2

v2(t)[ζ(t− z)− ζ(t)]dt− 1
π

∫ 2ω1

0
v1(t)[ζ(t− z)− ζ(t)]dt + K,

K is an arbitrary real constant.
By means of the integral (1) Sedov has also solved double-periodic planar

problems of the theory of hydroturbins [5].
The integrals of the type (1) were used in [6] for studying the linear conjuga-

tion problem with the double-periodic jump line for the class of double-periodic
functions.

The following theorem is true [6]
Theorem 2. If φ ∈ H∗ on L0, then W (z) is a sectionally holomorphic double

quasi- periodic function with the jump line L and with the addends

γ1 = − δ1

2πi

∫

L0

φ(t)dt, γ2 = − δ2

2πi

∫

L0

φ(t)dt,

there exists the limiting values of W (z) from the left and from the right of L and
the following formula is valid

W±(t0) = ±φ(t0)
2

+
1

2πi

∫

L0

φ(t)ζ(t− t0)dt, t0 ∈ L,



On the Cauchy Integrals with the Weierstraß Kernel 79

where W±(t0) denotes boundary values from the left and from the right of L
respectively.

By means of the function W (z) in [7-10, 14, 15] the effective solutions of the
linear conjugation problem with the double-periodic jump line for the class of
polynomially and exponentially double-quasi periodic functions are obtained.

In [16] the following theorem is proved
Theorem 3. If ∫

L0

φ(t)dt = 0,

then W (z) is a double-periodic sectionally holomorphic function representable as
the double series

W (z) =
1

2πi

∫

L

[
φ(t)
t− z

− φ(t)
t

]
dt

=
∞∑

m,n=−∞

1
2πi

∫

Lmn

[
φ(t)
t− z

− φ(t)
t

]
dt +

1
2πi

∫

L0

φ(t)ζ(t)dt.

In double-quasi periodic problems of hydrodynamics we have the linear sin-
gular integral equation of the type [7, 11, 12]

1
2πi

∫

L0

φ(t)ζ(t− t0)dt = f(t0), f ∈ H∗, t0 ∈ L0. (7)

The singular integral equation (7) when the line of integration is the union
of a countable number of segments distributed along the axis ox was studied in
[20, 21] and in the case of countable number of closed contours in [22].

The equation (7) was solved completely in [16- 19] for the different types of the
line L0. In [19] it is proved that the solution of equation (7) of the Muskhelishvili-
Kveselava class always exists and the effective solutions are obtained.

In the future we will use the results of Muskhelishvili [1] and Melnik [32].
Theorem 4. If the function φ(t) ∈ H∗ at the line L = [0, 1], then the

following formula is true

∫ 1

0

φ(t)
t− τ

dt = ctgαπ
φ∗(0)

(t− ci)α
+ f∗(τ), 0 < α < 1, τ ∈ [0, 1], i = 1, 2, ..., p, (8)

where the function (t − ci)α
1 f∗; 0 < α1 < α is Hölder continuous function [1,

Chapter 1].
By the notation t2 = t

′
it is easy to obtain

Corollary 4.1 If the function φ(t) ∈ H at the line L = [0, 1], then the
following formula is true

∫ 1

0

φ(t)
t2 − τ2

dt = f∗(τ), τ ∈ [0, 1],

where the function (t)1/2f∗ is Hölder continuous function and

lim
t0½0

(t)1/2f∗ = 0.
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Theorem 5. If the function φ(t) ∈ H at the line L = [0, 1], then the following
formula is true

∫ 1

0

φ(t)[ln t]
t− τ

dt = −φ(0)
2

[ln2(τ)− 2πi ln(τ)] + f∗∗(τ), (9)

where the function f∗∗ is Hölder continuous on [0, 1].
Let us consider the following integral

∫ 1

0

[ln t]
t + τ

dt.

Putting the notation −τ = τ
′
; τ

′ ∈ [−1, 0], according to Theorem 5 we obtain
∫ 1

0

[ln t]
t + τ

dt = − ln2(−τ)
2

+ πi[ln(τ) + πi] + f∗∗(−τ).

Corollary 5.1 For τ ∈ [0, 1] the following formula is true
∫ 1

0
ln t[

1
t− τ

− 1
t + τ

]dt =
π2

2
+ f∗∗(τ)− f∗∗(−τ), τ ∈ [0, 1].

2. Analysis of the nonlinear integral equation with the Weierstraß
kernel

In the present work we consider the nonlinear integral equation with the
Weiersraß kernel

v(t0) = 3g
∫ t0
0 sin

[
1
3π

∫ 2ω1

0 [ln v(t)][ζ(t− τ)− ζ(t− τ − iω2)

−ζ(t) + ζ(t− iω2)]dt
]
dτ, t0 ∈ [0, 2ω1],

(10)

where g is gravity acceleration, the function v(t0) is an unknown function of the
H∗ class, ln z is the branch for which ln 1 = 0.

The equation (10) is associated with the planar Stokes waves and was obtained
by the author in [11, 12]. By these results the profile of Stokes wave is given by
the formula

f0(t0) =
1
2g

(2A− v2/3(t0)), (11)

A is the definite constant. The function f0(t0) is one period of Stokes wave with
the periods 2nω1; n = ±1,±2, .... These waves are gravity waves in incompressible
Euler fluid [11, 12, 23, 27].

In [28] by means of the conformal mapping method equation (10) is reduced
to the integral equation with the weakly singular kernel and the existence of
solution of this equation is shown. In [29,30] the approximate solution of this
equation is obtained.

Here we will analyze the behavior of the solution of equation (10) near the
point t0 = 0 and construct the approximate solution in the case of the symmetric
wave i. e. f0(−t0) = f0(t0). Consequently v(−t0) = v(t0). For this purpose we
rewrite equation (10) in the different form.
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Let us consider the following integral

K0(τ) =
∫ 2ω1

0 [ln v(t)][ζ(t− τ)− ζ(t− τ − iω2)

−ζ(t) + ζ(t− iω2)]dt, τ ∈ [−2ω1, 2ω1].
(12)

Substituting in (12) the variable t = 2ω1 − t′ and using the property of zeta-
function 2 one obtains

K0(τ) = − ∫ 2ω1

0 [ln v(t)][ζ(t + τ)− ζ(t + τ + iω2)

−ζ(t) + ζ(t + iω2)]dt, τ ∈ [−2ω1, 2ω1].
(13)

By using the representations (12),(13) and the formula ζ(t + iω2) = ζ(t −
iω2 + 2iω2) = ζ(t− iω2) + δ2 equation (10) can be rewritten in the form

v(t0) = 3g

∫ t0

0
sin

1
6π

A[v(τ)]dτ, (14)

where

A[v(τ)] =
∫ 2ω1

0
[ln v(t)]K(t, τ)dt, (15)

and the kernel K(t, τ) is representable in the form

K(t, τ) = ζ(t− τ)− ζ(t + τ)− ζ(t− τ − iω2) + ζ(t + τ − iω2)

= ζ(t− τ)− ζ(t + τ)− 1/2ζ(t− τ − iω2)− 1/2ζ(t− τ + iω2

+1/2ζ(t + τ − iω2) + 1/2ζ(t + τ + iω2).

(16)

The function given by the formula (16) is the function of two variables t and
τ and is double-periodic with respect to this variables with the periods 2ω1 and
2iω2. By using the properties of zeta-function it is easy to check, that zeros of
K(t, τ) are 0;ω1; iω2;−ω1− iω2 with respect to τ and ω1

2 ;− iω2
2 ; iω2

2 +ω1; 3iω2
2 −ω1

with respect to t.The poles of K(t, τ) are −t; t; t− iω2;−t + iω2 with respect to
τ and −τ ; τ ; τ + iω2;−τ + iω2 with respect to t. By using the Theorem 1 after
simple transformations we obtain

K(t, τ) = C0 × σ(τ)σ(τ − ω1)σ(τ − iω2)σ(τ + ω1 + iω2)
σ(t− τ)σ(t + τ)

×σ(t− iω2/2)σ(t + iω2/2)σ(t− iω2/2− ω1)σ(t− 3iω2/2 + ω1)
σ(t− τ − iω2)σ(t + τ − iω2)

,

(17)

where
C0 =

2ζ(ω1 − iω2/2) + 2ζ(ω1 + iω2/2)
σ4(iω2/2)

.

Taking into the account the formulaes (3) and (5) in (17) we can rewrite the
function K(t, τ) in the form

K(t, τ) = 2C0

sin πτ
2ω1

cos πτ
2ω1

sin2 πt
2ω1

− sin2 πτ
2ω1

σ∗(t, τ), (18)
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where
σ∗(t, τ) =

σ(τ − iω2)σ(τ + ω1 + iω2)
σ(t− τ − iω2)

×σ(t− iω2/2)σ(t + iω2/2)σ(t− iω2/2− ω1)σ(t− 3iω2/2 + ω1)
σ(t + τ − iω2)

(19)

× exp[
δ1

4ω1
(ω2

1 − 2τω1 − 2t2)]Π∞r=1 exp[−4
r

h2r

(1− h2r)
(cos

rπτ

ω1
− cos

rπt

2ω1
cos

rπτ

2ω1
)].

By using properties 1, 2, and 3 of “zeta-function” after simple transformations
we obtain

A[v(τ)] = 2
∫ ω1

0
[ln v(t)][K(t, τ)]dt. (20)

From the viewpoint of hydrodynamics we suppose, that the solution of the
equation (14) is reperesentable in the form

v = v0 sin
πt0
2ω1

, (21)

where v0 is unknown bounded function of the H∗ class satisfying the inequality
0 < m ≤ v0 ≤ 1 (m is the definite constant).

According to (2) and (16) the function K(t, τ) is representable in the form

K(t, τ) =
1

t− τ
− 1

t + τ
+ K1(t, τ), (22)

where K1(t, τ) is the analytic function having definite limit at the point τ = 0.
According to the Corollaries 4.1, 5.1 and the representations (20), (21), (22)

the function A[v(τ)] satisfies the following

lim
τ½0

A[v(τ)] = π2. (23)

If in the formula (14) we use (23) and the representation

sin
1
6π

A[v(τ)] = sin
1
6π

[A[v(τ)]− π2 + π2]

= sin
1
6π

[A[v(τ)]− π2] cos π/6 + sinπ/6 cos
1
6π

[A[v(τ)]− π2],

we obtain

lim
t0½0

v(t0)
t0

= 3g sinπ/6, lim
t0½0

v(t0)
sinπt0/2ω1

= 3gω1/π. (24)

Hence, we conclude
Theorem 6. If the solution of equation (14) is representable by formula (21)

then formula (24) is true.
Now, let us suppose

sin
1
6π

[A[v(τ)]− π2] ≈ 1
6π

[A[v(τ)]− π2] (25)

and
ln

v0(t0)
M0

≈ v0(t0)
M0

− 1;M0 = 3gω1/π; t0 ∈ [0, ω1]. (26)
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Taking into the account (25) and (26) we can rewrite equation (14) in the
form

v(t0) =
√

3g

4π

∫ t0

0
A[v(τ)]dτ +

gt0
4

(3−
√

3π)

=
√

3g

4π

∫ ω1

0
[ln v(t)]K0(t0, t)dt +

gt0
4

(3−
√

3π),
(27)

where

K0(t0, t) =
∫ t0
0 K(t, τ)dτ

= 1/2 ln
∣∣∣σ(t0 − t− iω2)σ(t0 − t + iω2)σ(t0 + t− iω2)σ(t0 + t + iω2)

σ2(t0 − t)σ2(t0 + t)

× σ4(t)
σ2(t + iω2)σ2(t− iω2)

∣∣∣.

(28)

Taking into the account ∫ ω1

0
K0(t0, t)dt = δ1t

2
0,

we can rewrite equation (27) in the form (the equation with respect to v0; t0 ∈
[0, ω1])

v0(t0) =
√

3g

4πu0(t0)

∫ ω1

0

[v0(t)
M0

− 1
]
K0(t0, t)dt + f0(t0), u0(t) = sin

πt0
2ω1

, (29)

where

f0(t0) =
√

3g

2πu0(t0)

∫ ω1

0
[ln u0(t)]K0(t0, t)dt +

√
3gδ1t

2
0

4πu0(t0)
ln M0 +

gt0
4u0(t)

(3−
√

3π).

Let us rewrite equation (29) in the form

v0(t0) =
√

3gω1

4πu0(t0)

∫ 1

0

[v0(ω1t)
M0

− 1
]
K0(t0, ω1t)dt + f0(t0), (30)

where

f0(t0) =
√

3gω1

2πu0(t0)

∫ 1

0
[lnu0(t)]K0(t0, ω1t)dt +

√
3gδ1t

2
0

4πu0(t0)
ln M0 +

gt0
4u0(t)

(3−
√

3π).

By Theorem 6 for the function v0 we have

lim
t0½0

v0(t0) = 3gω1/π.

Let us denote the operator on the right hand side of (30) by B[v0]. This
operator is completely continuous in the area |t0| ≤ ω1; |v0 −M0| ≤ ε0, ε0 > 0,
[31, 33].

By Theorems 4 and 5 functions f0(t0) and
√

3gω1

4πu0(t0)

∫ 1
0 K0(t0, ω1t)dt are Hölder

continues for t0 ∈ [0, ω1], hence

|f0 −M0| ≤ C1ω1ω1
α, 0 < α ≤ 1, 0 < β ≤ 1,

∣∣∣∣∣

√
3gω1

4πu0(t0)

∫ 1

0
K0(t0, ω1t)dt−

√
3gω1

4πu0(t0)

∫ 1

0
K0(t0, ω1t)dt

∣∣∣∣∣ ≤ C2ω1ω1
β,

(31)
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where C1 and C2 are the definite constants.
According to (29) and (31) we obtain

|B[v0]−M0| ≤ C1ω1ω1
α + C2

ε0
M0

ω1ω1
β = C1ω1ω1

α + C2
ε0π

3g
ω1

β. (32)

By (32) the following theorem is true [31, 33]
Theorem 7. If

ω1 ≤ min

{
ε0,

(
1

2C1

)1/α

,

(
1

2C3

)1/β

, C3 =
C2π

3g

}
,

there exists the solution of the equation (29) for t0 ∈ [0, ω1].
Remark 1. If there exists the solution of the equation (29), it belongs to the

class H∗ [33].
Taking into the consideration Theorem 7 we conclude:
If the conditions (25) and (26) hold, there exists the solution of the equation

(27) and hence there exists the Stokes wave of the form

f0(t0) = A/g −
[
v0 sin

πt0
2ω1

]2/3
,

where v0 is the function of the H∗ class, v0 6= 0.
Remark 2. If the Stokes wave is not symmetric, it is of the form

f0(t0) =
A

g
− v

2/3
0

cos4/3
(

πt0
2ω1

) sin2/3

(
πt0
2ω1

)
ln2/3

(
sin

πt0
2ω1

)
,

where v0 is the function of the H∗ class, v0 6= 0.
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