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CONFORMAL MODULUS OF QUADRILATERALS

Shengelia I.

Abstract. In this paper we consider dependence of conformal modulus of quadri-

lateral on the special conformal map and it is shown that this function as a

parameter is monotonic.
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A domain is an open connected set in the complex place C. A closed
curve is the continuous image of a circle. A simple closed curve, or a Jordan
curve, is a one-to-one continuous image of a circle. The Jordan curve the-
orem asserts that every Jordan curve Γ divides the plane into two domains
with the common boundary Γ, the interior (or bounded domain) and the
exterior (or unbounded domain) of the curve. The interior of a Jordan curve
is called a Jordan domain.

A domain D in C is called simple-connected if all closed curves in D are
null-homotopic.

Riemann Mapping Theorem. The simple-connected domain which
is a proper subset of the complex place can be mapping conformally onto the
unit disk ∆ = {z ∈ C : |z| < 1}.

Caratheodory Extension Theorem. Let D be a Jordan domain
bounded by a Jordan curve Γ, and let f map D conformally onto the unit
disk ∆. Then f can be extended to a homeomorphism of D = D ∪ Γ onto
the closed disk ∆.

One obvious corollary is that a conformal mapping of a Jordan domain
D1 onto another Jordan domain D2 can be extended to a homeomerpism of
D1 onto D2.

A Jordan domain D with four distinct points q1, q2, q3, q4 on the bound-
ary curve of D, which occur in this order, when traversing the boundary in
the positive direction, is called a quadrilateral.

Let the bounded Jordan curve in the complex plane divide the extended
complex plane into two domains I and E, whose common boundary is a
Jordan curve. Let I be the bounded domain.

By Caratheodory theorem there exists conformal mapping from the
domain I into the rectangle f : I → [−Dx, Dx] × [0, iDy] such that the
four distinct points are mapped into the vertices of the rectangle Dx, Dx +
iDy,−Dx + iDy,−Dx. The ratio of the lenght of the line segments of the
rectangle M = 2Dx/Dy is called the modulus of the rectangle(see [1]). Ob-
viously the similar rectangles have the same moduli.
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In order to find modulus of some quadrilateral it has to be mapped
into a rectangle. Let z = h(q) be the mapping from some quadrilateral in
the Q complex plane into the upper half plane. This maps the interior of
the quadrilateral to the upper half plane, and maps the boundary of the
quadrilateral to the real line, such that the four points on the boundary
are mapped somewhere in the real line: h(q1) = x1, h(q2) = x2, h(q3) =
x3, h(q4) = x4.

The mapping

f(z) =
z − x1

z − x4

x2 − x4

x2 − x1

is well known as a cross-ratio of four points. It is known that it maps the
upper half plane into itself. Indeed, from the identity

f(x, y) = u(x, y) + iv(x, y)

=
x2 − x4

x2 − x1

y2 + x2 − x(x1 + x4) + x1x4

y2 + (x− x4)2
+ i

x2 − x4

x2 − x1

y(x1 − x4)

y2 + (x− x4)2

f(x3) = ξ

it follows, that if y > 0 then Im(f) > 0 and vice versa.
Below we use the properties of f, in particular f(x3) = ξ notation.
Let

f1(z) =
z − x1

z − x4

x2 − x4

x2 − x1

and

f2(ω) =
ω + η

ω − η

1 + η

1− η
,

where η > 1 is real. f2 maps the points −η,−1, η to 0, 1,+∞ and f2(1) =
ξ′ > 1. The inverse of f2 maps the upper half plane into itself and the four
points 0, 1, ξ′,+∞ to −η,−1, 1, η. Suppose ξ′ = ξ, then f−1

2 (f(z)) maps the
upper half of the plane z into the upper half of the plane ω such that the
any four points on the real line x1, x2, x3, x4 are mapped to four symmetric
points on the real line −η,−1, 1, η, where η is found by the transformation
ξ′ = ξ:

ξ′ =
(η + 1)2

(η − 1)2
=

x3 − x1

x3 − x4

x2 − x4

x2 − x1

= ξ ⇒ η =

√
ξ + 1√
ξ − 1

> 1

The Schwarz-Christoffel Transformation maps the upper half plane into
the polygon, such that the real axis is mapped into the boundary of the
polygon:

G(ω0) = A+B

∫ ω0

0

dω

(ω − a)1−
α
π (ω − b)1−

β
π ...

(1)

where A and B are in general some complex constants. a, b (and so on),
are the real numbers and they are mapped into the vertices of the polygon.
α, β (and so on), are the angels, respectively, of those vertices.
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Consider the transformation of the upper half plane, such that fixed four
points (1, η,−η,−1) map into the rectangle (Dx, Dx+iDy,−Dx+iDy,−Dx).
Then the point 0ω will be mapped into ”itself”. It means, that A is zero.
From (1) we obtain

Dx = Bk

∫ 1

0

dω√
(1− ω2)(1− k2ω2)

, (2)

Dx + iDy = Bk

∫ η

0

dω√
(1− ω2)(1− k2ω2)

, (3)

where k = 1
η
.

From (3) we have:

Dx + iDy = Bk

∫ 1

0

dω√
(1− ω2)(1− k2ω2)

+Bk

∫ η

1

dω√
(1− ω2)(1− k2ω2)

= BkΨ(k) +Bk

∫ η

1

dω√
(1− ω2)(1− k2ω2)

. (4)

Let k′ =
√
1− k2. After changing the variable in (4) we obtain

ζ =

√
ω2 − 1

k′ω
⇒ ω =

1√
1− k′2ζ2

; dω =
k′2ζdζ

(1− k′2ζ2)3/2
.

Therefore,∫ η

1

dω√
(1− ω2)(1− k2ω2)

=

∫ 1

0

√
1− k′2ζ2i

√
1− k′2ζ2k′2ζdζ

k′
√
1− ζ2k′ζ(1− k′2ζ2)3/2

= i

∫ 1

0

dζ√
(1− ζ2)(1− k′2ζ2)

. (5)

From (2), (4) and (5) it follows that the vertices of the rectangle can be
written as

[BkΨ(k);BkΨ(k) + iBkΨ(k′);−BkΨ(k) +BkΨ(k′);−BkΨ(k)].

Finally for moduli M we have the explicit formula

M = 2BkΨ(k)/BkΨ(k′) =
2Ψ(k)

Ψ(k′)
. (6)

Next, we present Ψ(k) by the power series.
From identities

1√
1− k2ω2

=
∞∑
n=0

(2n− 1)!!

(2n)!!
k2nω2n,
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1√
1− ω2

=
∞∑

m=0

(2m)!

4m(m!)2
ω2m

follows

Ψ(k) =

∫ 1

0

∞∑
n,m=0

(2n− 1)!!(2m)!k2n

4m(2n)!!(m!)2
ω2n+2m

=
∞∑

n,m=0

∫ 1

0

(2n− 1)!!(2m)!k2n

4m(2n)!!(m!)2
ω2n+2m.

So

Ψ(k) =
∞∑

n,m=0

(2n− 1)!!(2m)!k2n

4m(2n)!!(m!)2(2n+ 2m+ 1)
.

Similarly

Ψ(k′) =
∞∑

p,q=0

(2p− 1)!!(2q)!k′2p

4q(2p)!!(q!)2(2p+ 2q + 1)
.

By the conditions k′ =
√
1− k2, k = 1/η =

√
ξ−1√
ξ+1

and (6) we obtain the
modulus as the function of ξ

M(ξ) = 2

∑∞
n,m=0

(2n−1)!!(2m)!
4m(2n)!!(m!)2(2n+2m+1)

(
√
ξ−1√
ξ+1

)2n∑∞
p,q=0

(2p−1)!!(2q)!
4q(2p)!!(q!)2(2p+2q+1)

( 2 4√ξ√
ξ+1

)2p
. (7)

Denote by

fk(ξ) =
(√ξ − 1√

ξ + 1

)2k

,

gk(ξ) =
( 2 4

√
ξ√

ξ + 1

)2k

,

akj =
(2k − 1)!!(2j)!

4j(2k)!!(j!)2(2k + 2j + 1)
.

Then

M = 2

∑∞
n,k=0 ankfn(ξ)∑∞
m,i=0 amigm(ξ)

.

The derivative of M(ξ) is equal to

dM

dξ
= 2

∑∞
n,m=0 ankami(f

′
ngm − fng

′
m)

(
∑∞

m=0 amigm(ξ))2
,

where ( ∞∑
m=0

amgm(ξ)
)2
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is always positive.
It is clear that

Kn,m(ξ) = f ′
ngm − fng

′
m

= n(
√

ξ − 1)2n−122m+1ξ
2m+1

4 +m(
√
ξ − 1)2n+122m−1ξ

2m−1
4

is positive, when ξ > 1. It means that

dM

dξ
> 0

when ξ > 1. Therefore the modulus monotonously increases.
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