Proceedings of I. Vekua Institute of Applied Mathematics
 Vol. 67, 2017

ON THE IMBEDDING OF THE SURFACE IN THE
 3-D RIEMANNIAN MANIFOLD
 Meunargia T.

Abstract

In the paper it is shown that any regular surface can be imbedded in the 3 -dimensional Riemannian manifold.

Keywords and phrases: Regular surface, Christoffel's symbols.
AMS subject classification (2000): 74B20.
The surface with non-zero Gaussian curvature is the 2-dimensional Riemannian manifold, which is imbedded in the 3-D Euclidean space. Therefore, for these varieties of properties it is possible to construct quite clear representations. Further, it is shown that any regular surface can be imbedded in the 3-D Riemannian manifold.

Let S be the regular surface. The radius vector \vec{R} of any point M may be expressed by the formula [1]

$$
\begin{equation*}
\vec{R}\left(x^{1}, x^{2}, x^{3}\right)=\vec{r}\left(x^{1}, x^{2}\right)+x^{3} \vec{n}\left(x^{1}, x^{2}\right), \tag{1}
\end{equation*}
$$

where x^{1}, x^{2} are Gaussian parameters of the surface $S, \vec{r}\left(x^{1}, x^{2}\right)$ and $\vec{n}\left(x^{1}, x^{2}\right)$ are, respectively, radius vector and unit vector of the normal to S at the point $\left(x^{1}, x^{2}\right) \in S$ fig. 1 .

Fig. 1.
Differentiating equality (1) we have

$$
\partial_{\alpha} \vec{R}=\overrightarrow{R_{\alpha}}=\left(a_{\alpha}^{\beta}-x^{3} b_{\alpha}^{\beta}\right) \overrightarrow{r_{\beta}}, \quad \overrightarrow{R_{3}}=\partial_{3} \vec{R}=\vec{n},
$$

where

$$
a_{\alpha}^{\beta}=\overrightarrow{r_{\alpha}} \overrightarrow{r^{\beta}}, \quad \overrightarrow{n_{\alpha}}=-b_{\alpha}^{\beta} \overrightarrow{r_{\beta}}, \quad \overrightarrow{r_{\alpha}}=\partial_{\alpha} \vec{r}, \quad(\alpha, \beta=1,2) .
$$

For the coordinate system $\hat{S}: x^{3}=$ const, the coefficients of the first quadratic form are expressed by the formulae

$$
\begin{gathered}
\mathrm{g}_{\alpha \beta}=\vec{R}_{\alpha} \overrightarrow{R_{\beta}}=a_{\alpha \beta}-2 x^{3} b_{\alpha \beta}+\left(x^{3}\right)^{2} b_{\alpha}^{\lambda} b_{\lambda \beta} \quad(\alpha, \beta, \lambda=1,2) \\
\mathrm{g}_{\alpha 3}=\overrightarrow{R_{\alpha}} \overrightarrow{R_{3}}=0, \quad \mathrm{~g}_{33}=\overrightarrow{R_{3}} \overrightarrow{R_{3}}=1, \quad\left(\overrightarrow{R_{3}}=\vec{n}\right) .
\end{gathered}
$$

Let $x^{1}=$ const, $x^{2}=$ const be coordinate lines of curvature on the surface S, then we have

$$
\begin{gathered}
\overrightarrow{R_{1}}=\left(1-k_{1} x^{3}\right) \overrightarrow{r_{1}}, \quad \overrightarrow{R_{2}}=\left(1-k_{1} x^{3}\right) \overrightarrow{r_{2}}, \quad \overrightarrow{R_{3}}=\vec{n}, \\
\overrightarrow{R^{1}}=\left(1-k_{1} x^{3}\right)^{-1} \vec{r}^{1}, \quad \overrightarrow{R^{2}}=\left(1-k_{1} x^{3}\right)^{-1} \vec{r}^{2}, \quad \overrightarrow{R^{3}}=\vec{n},
\end{gathered}
$$

where k_{1} and k_{2} are principal curvatures of the surface S.
Let us consider the 3-D Riemannian manifold M_{s}, constrained with the surface $S: \vec{r}=\vec{r}\left(x^{1}, x^{2}\right)$ by the formulas [2]

$$
\begin{equation*}
d S^{2}=A_{i k} d x^{i} d x^{k}, \quad(i, k=1,2,3) \tag{2}
\end{equation*}
$$

where

$$
\begin{gather*}
A_{i k}=\vec{R}_{i} \vec{r}_{k}=a_{i k}-x^{3} b_{i k}, \tag{3}\\
a_{i k}, a^{i k}, a_{k}^{i}=\left\{\begin{array}{l}
a_{\alpha \beta}, a^{\alpha \beta}, a_{\beta}^{\alpha}=\delta_{\beta}^{\alpha}, \text { if } i=\alpha, k=\beta, \\
\delta_{i j}, a^{i j}, a_{j}^{i}, \text { if } i=3 \text { or } k=3,
\end{array}\right. \tag{4}\\
b_{i k}, b^{i k}, b_{k}^{i}=\left\{\begin{array}{l}
b_{\alpha \beta}, b^{\alpha \beta}, b_{\beta}^{\alpha} \text { if } i=\alpha, k=\beta, \\
0, \text { if } i=3 \text { or } k=3, \\
a_{\alpha \beta}=\vec{r}_{\alpha} \cdot \vec{r}_{\beta}, \quad a^{\alpha \beta}=\vec{r}^{\alpha} \cdot \vec{r}^{\beta}, \quad \delta_{j}^{i}=\vec{r}^{i} \cdot \vec{r}_{j} .
\end{array}\right. \tag{5}
\end{gather*}
$$

In view of (4) and (5) the quadratic form (2) has the form

$$
d S^{2}=\left(1-x^{3} k_{0}\right) d S_{0}^{2}+\left(d x^{3}\right)^{2}
$$

where

$$
d S_{0}^{2}=a_{\alpha \beta} d x^{\alpha} d x^{\beta},
$$

and k_{0} is the normal curvature of the surface S.
For the surface $x^{3}=C=$ const we have

$$
d S^{2}=\left(1-C k_{0}\right) d S_{0}^{2}
$$

Let M_{S}^{0} denote the 3-D manifold with the metric

$$
\begin{equation*}
d S^{2}=d S_{0}^{2}+\left(d x^{3}\right)^{2}=a_{i j} d x^{i} d x^{j}, \quad(i, j=1,2,3) \tag{6}
\end{equation*}
$$

In this case $x^{3}=C$ and $d S=d S_{0}$.
For discriminants of the form (2) and (6) we have

$$
\mathrm{g}=a \vartheta^{2}
$$

where

$$
\begin{aligned}
& a=a_{11} a_{22}-a_{12}^{2}>0 \\
& \vartheta=\left(1-k_{1} x^{3}\right)\left(1-k_{2} x^{3}\right)=1-2 H x^{3}+k\left(x^{3}\right)^{2} \\
& H=k_{1}+k_{2}, \quad K=k_{1} k_{2}
\end{aligned}
$$

Here H and K are, respectively, middle and Gaussian curvatures of the surfaces. k_{1} and k_{2} are principal curvatures.

The Christoffel symbols of the first and second kinds are expressed by the following formulas

$$
\begin{gathered}
\bar{\Gamma}_{i j, k}=\frac{1}{2}\left(\partial_{i} A_{j k}+\partial_{j} A_{i k}-\partial_{k} A_{i j}\right), \\
\bar{\Gamma}_{i j}^{k}=A^{k m} \cdot \bar{\Gamma}_{i j, m},
\end{gathered}
$$

where

$$
\begin{aligned}
& A^{\alpha \beta}=\vartheta^{-1}\left(a^{\alpha \beta}-x^{3} k^{-1} R^{\nu \alpha \beta \gamma} b_{\nu \gamma}\right) \\
& A^{33}=1, \quad A^{3 \alpha}=A^{\alpha, 3}=0
\end{aligned}
$$

Here $R^{\nu \alpha \beta \gamma}$ are contravariant components of the Riemann-Christoffel tensor of the surface S

$$
R^{\nu \alpha \beta \gamma}=b^{\alpha \beta} b^{\nu \gamma}-b^{\alpha \gamma} b^{\nu \beta}
$$

The Riemann-Christoffel tensor has also the form

$$
R_{\cdot \alpha \beta \gamma}^{\nu . \cdots}=\partial_{\gamma} \Gamma_{\alpha \beta}^{\nu}-\partial_{\beta} \Gamma_{\alpha \gamma}^{\nu}+\Gamma_{\alpha \beta}^{\lambda} \Gamma_{\lambda \gamma}^{\nu}-\Gamma_{\alpha \gamma}^{\lambda} \Gamma_{\lambda \beta}^{\nu} .
$$

In view of (3) we get

$$
\bar{\Gamma}_{i j, k}=\Gamma_{i j, k}-x^{3} \widetilde{\Gamma}_{i j, k}-\frac{1}{2}\left(\delta_{i}^{3} b_{j k}+\delta_{j}^{3} b_{i k}-\delta_{k}^{3} b_{i j}\right)
$$

where Christoffel symbols have the forms

$$
\begin{aligned}
& \Gamma_{i j, k}=\frac{1}{2}\left(\partial_{i} a_{j k}+\partial_{j} a_{i k}-\partial_{k} a_{i j}\right), \\
& \widetilde{\Gamma}_{i j, k}=\frac{1}{2}\left(\partial_{i} b_{j k}+\partial_{j} b_{i k}-\partial_{k} b_{i j}\right) .
\end{aligned}
$$

The minimum intended for the indices $\Gamma_{i j, k}$ and $\widetilde{\Gamma}_{i j, k}$ has the forms

$$
\begin{align*}
& \Gamma_{\alpha \beta, \gamma}=\frac{1}{2}\left(\partial_{\alpha} a_{\beta \gamma}+\partial_{\beta} a_{\alpha \gamma}-\partial_{\gamma} a_{\alpha \beta}\right), \\
& \widetilde{\Gamma}_{\alpha \beta, \Gamma}=\frac{1}{2}\left(\partial_{\alpha} b_{\beta \gamma}+\partial_{\beta} b_{\alpha \gamma}-\partial_{\gamma} b_{\alpha \beta}\right) . \tag{7}
\end{align*}
$$

Using now the formula

$$
\partial_{\gamma} b_{\alpha \beta}=\nabla_{\gamma} b_{\alpha \beta}+b_{\nu \beta} \Gamma_{\gamma \alpha}^{\nu}+b_{\alpha \nu} \Gamma_{\gamma \beta}^{\cdots \nu}
$$

we can write equalities (7) as

$$
\begin{gathered}
\widetilde{\Gamma}_{\alpha \beta, \gamma}=\frac{1}{2}\left(\nabla_{\gamma} b_{\alpha \beta}+2 \Gamma_{\alpha \beta}^{\nu} b_{\nu \gamma}\right) \\
\bar{\Gamma}_{\alpha \beta, 3}=\frac{1}{2} b_{\alpha \beta}, \quad \bar{\Gamma}_{3 \alpha, \beta}=\bar{\Gamma}_{\alpha 3, \beta}=-\frac{1}{2} b_{\alpha \beta} .
\end{gathered}
$$

Further

$$
\begin{aligned}
& \bar{\Gamma}_{\alpha \beta, \gamma}=\Gamma_{\alpha \beta, \gamma}-\frac{1}{2} x^{3}\left(\nabla_{\alpha} b_{\beta \gamma}+2 \Gamma_{\alpha \beta}^{\nu} b_{\gamma \nu}\right), \\
& \bar{\Gamma}_{\alpha \beta, 3}=-\Gamma_{3 \alpha, \beta}=-\Gamma_{\alpha 3, \beta}=\frac{1}{2} b_{\alpha \beta}, \\
& \bar{\Gamma}_{33, k}=\bar{\Gamma}_{3 k, 3}=-\Gamma_{k 3,3} .
\end{aligned}
$$

In view of

$$
\begin{aligned}
& A^{\alpha \beta}=\vartheta^{-1}\left(a^{\alpha \beta}-x^{3} k^{-1} R^{\nu \alpha \beta \gamma} b_{\nu \gamma}\right), \\
& A^{33}=1, \quad A^{3 \alpha}=A^{\alpha 3}=0 .
\end{aligned}
$$

We have

$$
\begin{gathered}
\bar{\Gamma}_{\alpha \beta}^{\nu}=A^{\gamma \sigma} \bar{\Gamma}_{\alpha \beta, \sigma}=\frac{1}{\vartheta}\left\{\Gamma_{\alpha \beta}^{\gamma}-\left(\nabla_{\alpha \beta}^{\gamma}+\Gamma_{\alpha \beta}^{\mu} b_{\mu}^{\gamma}+k^{-1} R^{\nu \gamma \sigma \lambda} b_{\nu \lambda} \Gamma_{\alpha \beta, \sigma}\right) x^{3}\right. \\
\left.+\frac{\left(x^{3}\right)^{2}}{2 k}\left[R^{\nu \gamma \sigma \lambda} b_{\nu \lambda} \nabla_{\alpha} b_{\alpha \beta}+2 \Gamma_{\alpha \beta}^{\mu} R^{\nu \gamma \sigma \lambda} b_{\nu \lambda} b_{\sigma \mu}\right]\right\},
\end{gathered}
$$

where

$$
\begin{gathered}
\Gamma_{\alpha \beta}^{\mu} b_{\mu}^{\nu}+\frac{1}{k} R^{\nu \gamma \sigma \lambda} b_{\nu \lambda} \Gamma_{\alpha \beta, \sigma}=2 H \Gamma_{\alpha \beta}^{\gamma}, \\
\frac{1}{k} R^{\nu \gamma \sigma \lambda} b_{\nu \lambda} b_{\sigma \mu} \Gamma_{\alpha \beta}^{\mu}=K \Gamma_{\alpha \beta}^{\gamma} .
\end{gathered}
$$

Now we have

$$
\bar{\Gamma}_{\alpha \beta}^{\nu}=\Gamma_{\alpha \beta}^{\nu}-\frac{1}{2} x^{3} B_{\cdot \alpha \beta}^{\nu \cdots},
$$

where

$$
B_{\alpha \beta}^{\nu \cdots}=\frac{1}{\vartheta}\left(\nabla^{\gamma} b_{\alpha \beta}-x^{3} K^{-1} R^{\mu \nu \sigma \lambda} b_{\mu \lambda} \nabla_{\sigma} a_{\alpha \beta}\right)
$$

and

$$
B_{\cdot \alpha \beta}^{1 \cdots}=\frac{1}{1-k_{1} x_{3}} \nabla^{1} b_{\alpha \beta}, \quad B_{-\alpha \beta}^{2 \cdots}=\frac{1}{1-k_{2} x_{3}} \nabla^{2} b_{\alpha \beta} .
$$

Let S be a spherical surface of the radius R. Then

$$
\vec{n}=-\frac{1}{R} \vec{r}
$$

and

$$
b_{\alpha \beta}=-\vec{n}_{\alpha} \vec{r}_{\beta}=\frac{1}{R} \vec{r}_{\alpha} \vec{r}_{\beta}=\frac{1}{R} a_{\alpha \beta} .
$$

Hence

$$
A_{\alpha \beta}=\left(1-\frac{x^{3}}{R}\right) a_{\alpha \beta}, \quad A_{33}=1, \quad A_{3 \alpha}=A_{\alpha 3}=0
$$

$$
A^{\alpha 3}=\frac{a^{\alpha \beta}}{1-\frac{x^{3}}{R}} \quad A^{33}=1, \quad A^{3 \alpha}=A^{\alpha 3}=0 .
$$

Then

$$
\begin{aligned}
& \bar{\Gamma}_{\alpha \beta, \gamma}=\left(1-\frac{x^{3}}{R}\right) \Gamma_{\alpha \beta, \gamma} \quad \bar{\Gamma}_{\alpha \beta, 3}=\frac{1}{2 R} a_{\alpha \beta}, \\
& \bar{\Gamma}_{\alpha 3, \beta}=\bar{\Gamma}_{3 \alpha, \beta}=-\frac{1}{2 R} a_{\alpha \beta}, \quad \bar{\Gamma}_{33, k}=\bar{\Gamma}_{3 k, 3}=\bar{\Gamma}_{k 3,3}=0, \\
& \bar{\Gamma}_{\alpha \beta}^{\gamma}, \quad \Gamma_{\alpha \beta}^{\gamma}, \quad \bar{\Gamma}_{\alpha \beta}^{3}=\frac{1}{2 R} a_{\alpha \beta}, \quad \bar{\Gamma}_{\alpha 3}^{\beta}=\bar{\Gamma}_{3 \alpha}^{\beta}=\frac{1}{2 R\left(1-\frac{x^{3}}{R}\right)^{3}} a_{\alpha \beta} .
\end{aligned}
$$

The Riemann-Christoffel tensor has the form

$$
\begin{equation*}
\bar{\Gamma}_{\cdot \alpha \beta \gamma}^{\lambda \cdots}=\left(1-\frac{1}{4\left(1-\frac{x^{3}}{R}\right)}\right) R_{\cdot \alpha \beta \gamma}^{\lambda \cdots} \tag{8}
\end{equation*}
$$

where $R_{\cdot \alpha \beta \gamma}^{\lambda \ldots}$ is a Riemann-Christoffel tensor of the spherical surface, which has the form

$$
R_{\cdot \alpha \beta \gamma}^{\lambda \cdots}=\frac{1}{R^{2}} C^{\cdot \lambda} \alpha \cdot C_{\beta \gamma},
$$

where

$$
\begin{aligned}
& C_{11}=C_{22}=0, \quad C_{12}=C_{21}=\sqrt{a}, \\
& C_{\alpha \cdot}^{\cdot \beta}=a^{\beta \gamma} C_{\alpha \gamma}, \quad C_{\cdot \alpha}^{\beta \cdot}=a^{\beta \gamma} C_{\gamma \alpha}, \\
& C^{11}=C^{22}=0, \quad C^{12}=-C^{21}=\frac{1}{\sqrt{a}} .
\end{aligned}
$$

From (8) we have

$$
\bar{R}_{\cdot \alpha \beta \gamma}^{\nu \cdots} \neq 0, \quad \text { if } \quad x^{3}<\frac{3 R}{4} .
$$

Thus for outside the spherical surface with the radius $\frac{3 R}{4}$ the M_{S} is a strictly Riemann surface.

Acknowledgement. The designated project has been fulfilled by a financial support of Shota Rustaveli National Science Foundation (Grant SRNSF/FR/358/5-109/14).

REFERENCES

1. Vekua I.N. Shell Theory: General Methods of Construction. Pitman Advanced Publishing Program, Boston-London-Melbourne, 1985.
2. Vekua I.N. Foundations of Tensor Analysis and the Theory of Ovariants (Russian). Nauka, Moscow, 1978, 296 pp.

Received 11.09.2017; accepted 25.09.2017.
Author's address:
T. Meunargia
I. Vekua Institute of Applied Mathematics of
I. Javakhishvili Tbilisi State University

2, University str., Tbilisi 0186
Georgia
E-mail: tengizmeunargia37@gmail.com

