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ON THE IMBEDDING OF THE SURFACE IN THE
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Abstract. In the paper it is shown that any regular surface can be imbedded in

the 3-dimensional Riemannian manifold.
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The surface with non-zero Gaussian curvature is the 2-dimensional Rie-
mannian manifold, which is imbedded in the 3-D Euclidean space. There-
fore, for these varieties of properties it is possible to construct quite clear
representations. Further, it is shown that any regular surface can be imbed-
ded in the 3-D Riemannian manifold.

Let S be the regular surface. The radius vector R⃗ of any point M may
be expressed by the formula [1]

R⃗(x1, x2, x3) = r⃗(x1, x2) + x3n⃗(x1, x2), (1)

where x1, x2 are Gaussian parameters of the surface S, r⃗(x1, x2) and n⃗(x1, x2)
are, respectively, radius vector and unit vector of the normal to S at the
point (x1, x2) ∈ S fig. 1.

Fig. 1.

Differentiating equality (1) we have

∂αR⃗ = R⃗α = (aβα − x3bβα)r⃗β, R⃗3 = ∂3R⃗ = n⃗,

where

aβα = r⃗αr⃗β, n⃗α = −bβαr⃗β, r⃗α = ∂αr⃗, (α, β = 1, 2).
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For the coordinate system Ŝ : x3 = const, the coefficients of the first
quadratic form are expressed by the formulae

gαβ = R⃗αR⃗β = aαβ − 2x3bαβ + (x3)2bλαbλβ (α, β, λ = 1, 2)

gα3 = R⃗αR⃗3 = 0, g33 = R⃗3R⃗3 = 1, (R⃗3 = n⃗).

Let x1 = const, x2 = const be coordinate lines of curvature on the surface
S, then we have

R⃗1 = (1− k1x
3)r⃗1, R⃗2 = (1− k1x

3)r⃗2, R⃗3 = n⃗,

R⃗1 = (1− k1x
3)−1r⃗ 1, R⃗2 = (1− k1x

3)−1r⃗ 2, R⃗3 = n⃗,

where k1 and k2 are principal curvatures of the surface S.
Let us consider the 3-D Riemannian manifold Ms, constrained with the

surface S : r⃗ = r⃗(x1, x2) by the formulas [2]

dS2 = Aikdx
idxk, (i, k = 1, 2, 3) (2)

where
Aik = R⃗ir⃗k = aik − x3bik, (3)

aik, a
ik, aik =

{
aαβ, a

αβ, aαβ = δαβ , if i = α, k = β,

δij, a
ij, aij, if i = 3 or k = 3,

(4)

bik, b
ik, bik =

{
bαβ, b

αβ, bαβ if i = α, k = β,

0, if i = 3 or k = 3,
(5)

aαβ = r⃗α · r⃗β, aαβ = r⃗ α · r⃗ β, δij = r⃗ i · r⃗j.

In view of (4) and (5) the quadratic form (2) has the form

dS2 = (1− x3k0)dS
2
0 + (dx3)2,

where
dS2

0 = aαβdx
αdxβ,

and k0 is the normal curvature of the surface S.
For the surface x3 = C = const we have

dS2 = (1− Ck0)dS
2
0 .

Let M0
S denote the 3-D manifold with the metric

dS2 = dS2
0 + (dx3)2 = aijdx

idxj, (i, j = 1, 2, 3). (6)

In this case x3 = C and dS = dS0.
For discriminants of the form (2) and (6) we have

g = aϑ2,
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where
a = a11a22 − a212 > 0

ϑ = (1− k1x
3)(1− k2x

3) = 1− 2Hx3 + k(x3)2,

H = k1 + k2, K = k1k2.

Here H and K are, respectively, middle and Gaussian curvatures of the
surfaces. k1 and k2 are principal curvatures.

The Christoffel symbols of the first and second kinds are expressed by
the following formulas

Γij,k =
1

2
(∂iAjk + ∂jAik − ∂kAij),

Γ
k

ij = Akm · Γij,m,

where
Aαβ = ϑ−1(aαβ − x3k−1Rναβγbνγ),

A33 = 1, A3α = Aα,3 = 0.

Here Rναβγ are contravariant components of the Riemann-Christoffel tensor
of the surface S

Rναβγ = bαβbνγ − bαγbνβ.

The Riemann-Christoffel tensor has also the form

Rν···
·αβγ = ∂γΓ

ν
αβ − ∂βΓ

ν
αγ + Γλ

αβΓ
ν
λγ − Γλ

αγΓ
ν
λβ.

In view of (3) we get

Γij,k = Γij,k − x3Γ̃ij,k −
1

2
(δ3i bjk + δ3j bik − δ3kbij),

where Christoffel symbols have the forms

Γij,k =
1

2
(∂iajk + ∂jaik − ∂kaij),

Γ̃ij,k =
1

2
(∂ibjk + ∂jbik − ∂kbij).

The minimum intended for the indices Γij,k and Γ̃ij,k has the forms

Γαβ,γ =
1

2
(∂αaβγ + ∂βaαγ − ∂γaαβ),

Γ̃αβ,Γ =
1

2
(∂αbβγ + ∂βbαγ − ∂γbαβ). (7)

Using now the formula

∂γbαβ = ∇γbαβ + bνβΓ
ν
γα + bανΓ

··ν
γβ·.
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we can write equalities (7) as

Γ̃αβ,γ =
1

2
(∇γbαβ + 2Γν

αβbνγ)

Γαβ,3 =
1

2
bαβ, Γ3α,β = Γα3,β = −1

2
bαβ.

Further

Γαβ,γ = Γαβ,γ −
1

2
x3(∇αbβγ + 2Γν

αβbγν),

Γαβ,3 = −Γ3α,β = −Γα3,β = 1
2
bαβ,

Γ33,k = Γ3k,3 = −Γk3,3.

In view of
Aαβ = ϑ−1(aαβ − x3k−1Rναβγbνγ),

A33 = 1, A3α = Aα3 = 0.

We have

Γ
ν

αβ = AγσΓαβ,σ =
1

ϑ
{Γγ

αβ − (∇γ
αβ + Γµ

αβb
γ
µ + k−1RνγσλbνλΓαβ,σ)x

3

+
(x3)2

2k
[Rνγσλbνλ∇αbαβ + 2Γµ

αβR
νγσλbνλbσµ]},

where

Γµ
αβb

ν
µ +

1

k
RνγσλbνλΓαβ,σ = 2HΓγ

αβ,

1

k
RνγσλbνλbσµΓ

µ
αβ = KΓγ

αβ.

Now we have

Γ
ν

αβ = Γν
αβ −

1

2
x3Bν···

·αβ,

where

Bν···
·αβ =

1

ϑ
(∇γbαβ − x3K−1Rµνσλbµλ∇σaαβ)

and

B1···
·αβ =

1

1− k1x3

∇1bαβ, B2···
·αβ =

1

1− k2x3

∇2bαβ.

Let S be a spherical surface of the radius R. Then

n⃗ = − 1

R
r⃗

and

bαβ = −n⃗αr⃗β =
1

R
r⃗αr⃗β =

1

R
aαβ.

Hence

Aαβ =

(
1− x3

R

)
aαβ, A33 = 1, A3α = Aα3 = 0,
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Aα3 =
aαβ

1− x3

R

A33 = 1, A3α = Aα3 = 0.

Then

Γαβ,γ =

(
1− x3

R

)
Γαβ,γ Γαβ,3 =

1

2R
aαβ,

Γα3,β = Γ3α,β = − 1

2R
aαβ, Γ33,k = Γ3k,3 = Γk3,3 = 0,

Γ
γ

αβ, Γγ
αβ, Γ

3

αβ =
1

2R
aαβ, Γ

β

α3 = Γ
β

3α =
1

2R

(
1− x3

R

)3aαβ.

The Riemann-Christoffel tensor has the form

Γ
λ···
·αβγ =

1− 1

4

(
1− x3

R

)
Rλ···

·αβγ, (8)

where Rλ···
·αβγ is a Riemann-Christoffel tensor of the spherical surface, which

has the form

Rλ···
·αβγ =

1

R2
C ·λα·Cβγ,

where
C11 = C22 = 0, C12 = C21 =

√
a,

C ·β
α· = aβγCαγ, Cβ·

·α = aβγCγα,

C11 = C22 = 0, C12 = −C21 =
1√
a
.

From (8) we have

R
ν···
·αβγ ̸= 0, if x3 <

3R

4
.

Thus for outside the spherical surface with the radius 3R
4

the MS is a
strictly Riemann surface.
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