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ON THE SCHWARZ-CHRISTOFFEL PARAMETERS PROBLEM
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Abstract. In the paper the Schwarz-Christoffel parameter problem is analyzed
and the method for their computation is given.
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In integrated circuitry and elsewhere in electronics, the electrical resis-
tance of a polygonal circuit element or pathway is often physically impor-
tant. In the simplest problem of resistor analysis and design, a polygon is
given and its resistance must be determined through selection of a poly-
gon, from a family of candidates parametrized by some geometric quantity
(see [1],[2]). It depends on the solution of a boundary value problem for
Laplace’s equation, and as a result it is invariant under a conformal map.
Therefore, we can construct a conformal map onto a new domain where the
problem is trivial.

Conformal mapping methods for resistor analysis on polygons requires
the numerical solution of a Schwarz-Christoffel parameter problem [3],
which has only recently become feasible for general polygons.

In this paper we will consider Schwarz-Christoffel formula

TN —Br
1 S
f (z)_wc+co/l!_[l(1 Zk) d¢

and find its constants through given parameters.

Theorem 1 (Schwarz-Christoffel). Let P be the interior of a polygon
[’ having vertices w1, ..., w, and external angles By, ..., B,m © n counter-
clockwise order. If f is conformal mapping from P to the upper half plane
H, then its inverse can be written in the form:

N —Bk
o <
f (z)_wc+00/£[1(1 Zk) dc,

where z, = f(wg) and w., C' are some constants.

Our goal is to solve the Schwarz-Christoffel parameter problem. For this
we will study the structure of the integration part.

If we have g(z) and its inverse g~!(z), then inverse of f(z) = a + bg(z)

Fe =g (55
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Therefore, if manage to find the inverse of

9(z) = / ,ﬁl (1 - f}jﬂk .

we will find f~!: P — H* conformal mapping.

To study the equation we will need to interpret expression, inside in-
tegration, as the sum series. By using Taylor series it easy to show the
following proposition.

Proposition 1. Let z € C\ {z =0V |z| =1} and o € Q. Then

(14 2)* = e?mice Z (Z) 25 when |z <1

k=0

and

o
1 4 2)* = e*mice (a) 227k when |z| > 1.
(1+2) > (; 4
Here the infinite power series gives only one of the values of the (1 + 2)¢,
while 2™ ¢ € 7, rotates on unit circle, giving all branch points and since
« is rational, these points are finite.

The coefficients are called binomial and they are used in combinatorics
and they are generalization of Newton’s binomial series. However, if we
follow Taylor formula step-by-step we will see that the coefficients are con-

structed, like
k .
ay\ ay\ a—7+1
(O)—l and (k)_H—j .

j=1
Furthermore, since factorials can be generalized by I'" function, we will use
the following expression
nl:=Tn+1)
for Vn € R.
To simplify visualization of operation on combinatorial structures, we’ll
be using expressions like

Z ak, by, = asby + azby + a1bs + agbs,
ki1+ko=3

E A,y bk20k3 = CL4boCo + a2b100 + a0b2C0 + albocl.
k1+2ko+3ks=4
In algebra it is common to use this kind of expression, since it allows to

better visualise operation on sets.
Proposition 2. If z # 0, then

r=—n \i—j=r
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where © — 53 = r expression means that v and j are mon-negative integer
numbers that satisfy this equation.
Example 1. If n = 2, we have

apb agbr + a1b
— ;22 + e - 12 + (aobo + a1b1 + agbg) + (a1b0 + agbl)l’ -+ a2b0x2.

If we organize coefficients as a matrix, we’ll get

apby aiby asby
Qo bl aq b1 a9 b1
apby  aiby  ashe

(n+1) X (n+ 1) dimensional square matrix and it is easy to see that for

rf<n
n
Z aibj = Z aibi_r.
i=r

i—j=r

Definition 1. For any z;,...,2y € C—{0} and a4, ...,ay € Q points,
we define A\, and u,, as

An (0, o an; 21,0, 2N) = Z (U (aJ)TJ>

kittky=n \j= &

N
a; 1
o s ([()2)
j=1 N/ %

ki4-+kn=n

The functions A, and p, are coefficients of power series which we are

constructing for
—Bk
n(-5)

product series.
Proposition 3. For the sequence {(z;, ozj)}j.v:l,
have the identity

Moeer-S( v (1))

n=0 \ki+-+ky=n \j=1

such that 0 < |z;¢| < 1,

and if |z;¢| > 1, we have

ey N
(1+ Czj)aj _ Z < (H (‘;J)Zjoz]—k]>> et tan=n
i=1 n=0 \ki+-+ky=n \j=1 \ 7

=
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< Indeed, if 0 < |2;¢| < 1, then

N N oo
fiscor- A ()= 5 ()~ ()

If |z;¢| > 1, then

floscor = (1) (f1(-2)’)
- <31]j1 (Czj)aj> (i (,M.;N:n (Jl]j (Zj) z]%>) g_n>
) nio% <k1+-§1\7=n <]ljjl (2]]) Zaajkj>) conttan—n

>

Remark 1. We can formulate Proposition 3 in the following manner:

N Qi oo
H <1+£) :ewZ)\n(al,...,aN;zl,...,zN)Q”, when |=| <1
j=1 J n=0 J
and
N C a; o
H (1+Z_) 2619Ca1+---+O‘N ZM" (041,---7aN;Zl7---7ZN) <7n, when Z_ > 1,
j=1 J n=0 J

where 0 < 8 < 27 is some constant.

At this point we have power series, which allow us to make approxima-
tion of a product, and all the difficulties are moved to coefficients A, and
ln, Which don’t depend on (.

Example 2. For better visualization, why we study this problem by
power series, let’s take fixed points on R and see how it works

- ¢ 7/3 ¢ 4/5 ¢ 23/11
o= (1) (10 8) " (14 )

- 7 4 23 n
O =2 (5, e 35) ¢

n=0

and
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From the theory we know that each component absolute convergence when
¢ € (0,3) interval, and our f, is a result of multiplying these components.
Suppose ( = 2, then

£(2) ~4.04345073813124671,
£1(2) ~4.04262394108668742,
F5(2) ~4.04344234608117199,
Fr0(2) ~4.04345073813124596.

As we can see, f, is making approximation of f and for rational arguments
it returns rational numbers. Since we showed how this series works, let’s
integrate both f and f;

2

/ F(O)dC ~ 4.57756,

0
2

/fs(C)dg ~ 4.57756.

0

Therefore, we can use this power series to approximately calculate this type
of integrals.
Lemma 1. Let zy,...,zy € C\ {0} be on arbitrary set of points and

0 <la| <lzo| <--- <an] < oo,

ay,...,ay € Q. Then for any

CG{ZGC\{O}

7&1’]:]7]\[}

z
Zj
we have three cases

1. If |C| < |z, then

N ¢ —B; >
H (1 - z_) = 6192(_1)71/\71 <_517 LR _ﬂN;Zl’ ce 7ZN) gn
j=1 J n=0

2. If [C| > |zn|, then

XY (=1t (=Brs - =By 2, 2an) (T
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Af |zu] < || < |zamsa], then

IEENS (CONNCEN

=1 J j=1 ! j=M+1 ’
= eiec—(ﬁr‘r'“-i-ﬁM) Z(_l)ngn,M (_517 ey _ﬂNv By 7ZN) gn
nez
where
§n,M (CY17-~76YN;Z17~-72N) =
o
Z Ak (QM41, - AN 20, - 2N) P (Q1s - Qs 215, 21)
k=nVv0

where n VvV 0 := max {n,0}, since if k <0, then A\, = g, = 0.

< First two are proved in Proposition 3. The third follows from Propo-
sition 2. >

Example 3. Let’s take a f function

- ¢ 7/3 ¢ 4/5 ¢ 8/11 ¢ 5/17
f(¢) = (1+§) (1—1—1—7) (14—%) <1+@)

and let ¢ =19, then
f(¢) =~ 293.3450707

unlike, when we hade only one side, when coefficients where calculated from
finite sum, in this case we have an infinite sum. For coefficients we write

n+m
o' (o, 2, a3, i 21, 22, 23, 24) = Z Ak (ag, Qs 23, 2a) pr—n (Q, Q23 21, 22)
k=n
: 748 5
m _ 7/3+4/5 m(_ = 2 .31 k
fn (C) C Z gk (375711a1773a 7735739)§

k=—n

and approximations are

30(19) ~ 293.3439706,
30(19) ~ 293.3454928,

If integrate both on (19, 23) interval, we get

23
/f(é)d( ~ 1570.876256,
1

9
23
/ FO(0)d¢ ~ 1570.875901.
19
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If we have the formal power series

f(x):1+a1:c+a2x2+---,

then ]
m:1+b1x+b2x2+ y
where
n k;
a.
b, = > (—1)kathattha (k;1+k:2+~-+kn)!Hﬁ.
k1 +2ko+-+nkn=n j=1"7"

Before we begin to prove, we need to mention that by

—  —14+) box? 4 .-
() + 012 + 022" + ,

we mean that right side is such that
(1—|—a1x+a2x2+~-) (1—|—blx+b2x2+---) =1+cx+cr?+---
where all ¢,, = 0. For example, first four b, are

bl = —aq,

2
bQZCLl—CLQ,

3
b3 = —ai + 2a1ay — as,

by = a‘lL — 3&%&2 + 2a1a3 + ag — Qy.

It is easy to justify that
Cpn = Z aibp—i, ag="by=1
i=0

and since ¢, = 0, we get recursive interpretation

bn = — i aibn,i.
=1

To solve the recursion, we’ll assume that

n

b, = Z (_1)/€1+k2+~.-+k‘n¢ (k1 ko, ... k) H a;?j’

k1+2ko+--+nkn=n Jj=1
where ¢ doesn’t depend on n and has the following properties
L ¢(0)=1;
2. ¢(ky,... kn)=0¢(k1,...,k,,0,0,...);
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3. If any argument is negative, then ¢ = 0.

Z (=) g (20,20, ..., 20) ﬁ ajj =b, = — Z asby_s

21+229++nzp=n Jj=1 s=1
n n
== ( Y. CUETTRG(h k) Ha/) a,
s=1 ki14+2ko+--4+nkn,=n—s Jj=1
n n
=3 ( > (—1)ftthag (k. .,kn)HajJ) X
s=1 k14+2ko+---+nkn,=n—s Jj=1

( Z X(Vi;«és:mi:())x(mszl)na;nj)

m1+2mao+-+nmy=s j=1

n
s=1 k1+2ko+---+nk,=n—s mi+2ma+---+nmun=s

n

(_1)k1+~.~+kn¢ (kl, R kn) X (Vi #s:im; = O) X (ms — 1) H affrmj

Jj=1

n
z1+2z9+4nzp=n s=1 k1+2ka+---+nk,=n—s

n

(=DM (ke k) X (Vi # 5 ke = 2) X (2 — ke = D) [ [ 0

7j=1
Here we made few important steps, the first one is following interpretation

n

w= Y xWMi#sim=0x0m=1][a"

mi1+2mao+--+nmy=s Jj=1

where y (A) is a Boolean function, which is 1 if A statement is true and 0
if it is false.

The second step was changing summation set, for visualisation let’s write
it like

Z Z Z w(ky, ... kp)v(my,...,my,)

s=1 k1+2ko+--+nk,=n—s mi+2ma+---+nmun=s

:Z Z Z w(ky, ... kp)v(zr — ki, 20— ky)

s=1 k1+2ko+--+nk,=n—s z1+222+-+nzn=n

— Z (Z Z u(k’l,...,]{?n)’l}<21—kl,...,Zn—]{fn)>-

214229+ +nzn=n \s=1 k1+2ko+---+nkp=n—s
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here we need the third property of ¢, that if the argument is negative, then
the function is 0.
Since a; coefficients are arbitrary we get, when z; +22,+---+nz, =n

(=)t g (21,0, 2,) =

— zn: Z (—1)MRtthng (ko k) X
s=1k

1+2k2+-+nkn=n—s
XX (Vi#s:ki=z)x(zs — ks =1)

n

_ § I+z1++2zs—1+(zs—1)+zs41++2

- (_1) ! st (S ) ot n¢(217"'7zs—17zs_17ZS+17“'7Z7L)
s=1

Therefore

n

gb(zl,...,zn):Z¢(21,...,z5_1,25—1,zs+1,...,zn).

s=1
For example
¢(2,1,0) =¢(1,1,0) + ¢(2,0,0) = ¢(1,0,0) + ¢ (1,0,0) + ¢(2,0,0) = 3

and it is the coefficient of afay in by.
Solution of this recursion is

(1 + 20+ +2)!
21lzol - 2] ’

G(21,. .y 2n) =

It is easy to check that it satisfies all properties, for example

(e (O e (e ) P (T et VR U1}

(k1 — 1)ks! kil(ko — 1)! ko !ks! K lks!
>

Example 4. If we take

sin(xr) I, 1, 14 g 1 ™m

. —l—gx —l—ax ot +0 (2%, a,= (n_i_l)!cos(?),
then ] . 21
x
e L 6 0 (28)
)~ 6 Tae® Tt TO)
Theorem 2. If we enumerate z1, 29, ..., 2N So that
|21] < zo| <o <an],

the constants in formula

z

f<z>=wc+o/ﬂ(1—f—k)_ﬁkd<

o k=1



On the Schwarz-Christoftel parameters problem 65

are )
1 et

C  f(z2) = f(21)

XY (=1)" ( > (=B .,—BN;zQ,...,zN)ukn(—ﬁ1;21)>

nez k=nVv0
’I’L*/J)1+]. 7’L7,51+].

) — 2
X )
n — ﬁl + 1
0 o Z?+1
we = f(z1) — Ce™ (=1)" A\ (=01, .o, =BN; 21, -5 2N) ,
— n—+1
where 08, and 0y are some constants.
< To find constants lets lake z = z; and z = zy points
—Bk
f(z) —wc—l—C’/H(l——) d¢
since |¢| < |z
f(zl):wc+c/z ﬁl?"w_ﬁN;Zh”'uZN)Cn
n=0
Zn+1
_wc—i-C'Z 61,...,—ﬂN;21,...,zN)n1+1.

If we take the integral from z; till 29, we get
F(z) - / H (1 - —) &

%2 o [e.e]
= C/Z 1" (C'Bl Z Ak (=82, - s =BN; 22, -5 2N) Bi—n (=B Z1)> ¢"d¢

2 ne” k=n
= O/Z(—l)" ( Ak (=B2y - s =BN; 22, - 5 2N) Hi—n (=515 Zl)) ("¢

21 neL k=n
= CZ(_l)n (Z Ak (_/82) ey _BN; 22y ey ZN) :uk:—n(_ﬁla Zl))

nez k=n
y Z;—ﬁ1+1___ ? B1+1

Tl—'614—1 ’
SO

1 nl—y B s p B s
5:mz(_l) (;/\k( Bay ooy —BN; 22, oy ZN) fo—n(— 1 1))
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2721—51-1—1 . Z{L—ﬁﬁ—l
X

n—p+1
>
Proposition 4. Let enumerate z1, zs, ..., zn such, that
1] < Jza| <0 < an],

then

ZM 41 N C — B 00 ZM+1

1_ S d — 0 _1 n . n*ﬂl*"’*ﬁMd
/H( k) (=S (1 [ € 3
k=1 nez
ZM M

where 6 depends on chosen M.

Comment 1. We can use some manipulations with power series coeffi-
cents to get interesting results, which can be hard to prove on its own, like
the Riemann zeta function for even positive arguments

(27)°
221 |B:|

((2) =

is proved by using Fourier Series expansion of B,(x) Bernoulli polynomials.
Besides, it is very well known how to find {(2) and similarly we can calculate

¢(6)

k=1 =1
00 00 mi\2 i\ 2
22 (1— ?* >:2x3 (1— v ) NG NN GO
LU G ) = U G )\ (<P
5 5 sin(z) sin (xe%i) si (xe’%i)
=2z _ L =
x res’t re 3t
> (2x)2n+1 2t w 1
N (et am Ty _ 2
;:;( Va5 3) 73
9.3 227 . R 421 n
=2xr° — — P
945 212837625  64965492466875 ’
SO
2¢(6)a? 227 0
- — )= 2
76 945 C( ) 945

From Proposition we know that

(14 2)* = e?mice Z <(]$) 2F when |z < 1.

k=0
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It is a Taylor series expansion of f(z) = (1 + 2)” and we don’t have restric-
tions on a € R. Binomial coefficients and factorials are strongly associated
with classical probability theory, so it may be unusual to see

(&) ()

since we cannot use analogs, like how many permutation ay, as, ..., a, dif-
ferent letters, have which is n!, because it works only for natural numbers.
The factorial is defined by recursion, which can be solved, by the I'-function

nl=In+1)= /t”etdt.
0

The same is for binomial coefficients. The coefficients we get from the Taylor

series are i
a\) ay) a—7+1
(6) =1 e () -II"=+

j=1

and then two experssions can be rewritten as

(&)= memr

Therefore, arguments of factorials and binomial functions are not limited

by N.
Example 5.
(1+2)1-2)"= (g (i) zk> (2 (f) (—zy)
2 @)

= Z(_1>r2FI <_/87 -, 6 —r+ 17 _1) (5) ZT?
r=0
on the other hand

(1+2)"(1-2)"=(1-22)" =" (B) (1) 2™,
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soif r > 0 is odd
oy (=B, 1, B—r+1;-1)=0

and if » > 0 is even

Example 6. If

(1+z)5:1—|—(f)z+<§>z2+<§>z3+~-,

1
(14 2)P

then
:1+b12+b222+b323+"‘,

where

ki + -+ k) kj
by = > (_1)k1+~~~+ks( 1;!““];;' ) H(f) :

k1+2ko+---+sks=s ’ j=1
Therefore, we get

- . s(k1+"'+ks>! (B k;
(s): 2. T (y)

k1 42kt +sks=s ’ j=1
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