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Abstract. The static equilibrium of porous elastic materials with triple-porosity

is considered in the case of an elastic Cosserat medium. A two-dimensional system

of equations of plane deformation is written in the complex form and its general

solution is represented by means of three analytic functions of a complex variable

and three solutions of Helmholtz equations. Concrete problem are solved for the

circle.
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Introduction

The first theory of consolidation for elastic materials with double poros-
ity was presented by Wilson and Aifantis [1]. This theory unifies the earlier
proposed models of porous media with single [2] and double [3, 4] porosities.
More general models of double porosity materials based on Darcy’s law are
introduced in [5-9] and studied by several authors [10-22].

The first mathematical formulation of flow through triple porosity media
is introduced by Liu [23] and several new triple porosity models for single-
phase flow in a fracture-matrix system are presented by Liu et al. [24],
Abdassah and Ershaghi [25], Al Ahmadi and Wattenbarger [26], Wu et al.
[27].

The mathematical models of multi-porosity media have found appli-
cations in many branches of civil engineering, geotechnical engineering,
technology and biomechanics. The intended applications of the theories
of elasticity and thermoelasticity for materials with a multi-porosity struc-
ture are to geological materials such as oil and gas reservoirs, rocks and soils,
manufactured porous materials such as ceramics and pressed powders, and
biomaterials such as bone [28-30].

It should be noted that all the papers mentioned above dealt with a
classical (symmetric) medium. We consider the problem of elasticity for
solids with triple-porosity in the case of an elastic Cosserat medium.

1. Basic equations

Let V be a bounded domain in the Euclidean two-dimensional space
E2 bounded by the contour S. Suppose that S ∈ C1,β, 0 < β ≤ 1. Let
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x = (x1, x2) be the points of space E2, ∂i =
∂
∂xi

. Let us assume that the
domain V is filled with an isotropic triple-porosity material.

The basic homogeneous system of equations for isotropic materials with
triple porosity has the form [22, 32, 33]:

∂ασαβ = 0, ∂αµα3 + (σ12 − σ21) = 0, (α, β = 1, 2) (1)

σ11 = −β1p1 − β2p2 − β3p3 + λθ + 2µ∂1u1,

σ22 = −β1p1 − β2p2 − β3p3 + λθ + 2µ∂2u2,

σ12 = (µ+ α)∂1u2 + (µ− α)∂2u1 − 2αω,

σ21 = (µ+ α)∂2u1 + (µ− α)∂1u2 + 2αω,

µ13 = (ν + β)∂1ω, µ23 = (ν + β)∂2ω,

(2)

(θ := ∂1u1 + ∂2u2),

where σαβ are stress tensor components, µα3 are moment stress tensor com-
ponents, uα are components of the displacement vector, ω is the component
of the rotation vector, pi (i = 1, 2, 3) are the pressures in the fluid phase, λ
and µ are the Lamé parameters, α, β, µ are the constants characterizing
the microstructure of the considered elastic medium, βi (i = 1, 2, 3) are the
effective stress parameters.

In the stationary case, the values p = (p1, p2, p3)
T satisfy the following

equation

∆p− Ap = 0, A =

 b1/a1 −a12/a1 −a13/a1
−a21/a2 b2/a2 −a23/a2
−a31/a3 −a32/a3 b3/a3

 (3)

where ai = ki
µ′ (for the fluid phase, each phase i carries its respectively

permeability ki, µ
′ is fluid viscosity), aij is the fluid transfer rate between

phase i and phase j, ∆ is the 2D Laplace operator, b1 = a12 + a13, b2 =
a21 + a23, b3 = a31 + a32.

On the plane x1x2, we introduce the complex variable z = x1 + ix2 =
reiϑ, (i2 = −1) and the operators ∂z = 0.5(∂1 − i∂2), ∂z̄ = 0.5(∂1 + i∂2),
z̄ = x1 − ix2, and ∆ = 4∂z∂z̄.

If relations (2) are substituted into system (1), then system (1) is written
in the complex form

2(µ+ α)∂z̄∂zu+ + (λ+ µ− α)∂z̄θ − 2αi∂z̄ω

−∂z̄(β1p1 + β2p2 + β3p3) = 0,

2(ν + β)∂z̄∂zω + αi(θ − 2∂z̄u+)− 2αω = 0,

(4)

(u+ = u1 + iu2).
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2. The general solution of system (3)-(4)

In this section, we construct the analogues of the Kolosov-Muskhelishvili
formulas [34] for system (4).

Equations (3) imply that

pi = f ′(z) + f ′(z) + li1χ1(z, z̄) + li2χ2(z, z̄),

where f(z) is an arbitrary analytic functions of a complex variable z in the
domain V and χα(z, z̄) is an arbitrary solution of the Helmholtz equation

∆χα(z, z̄)− καχα(z, z̄) = 0,

κα are eigenvalues and (l11, l21, l31), (l12, l22, l32) are eigenvectors of the ma-
trix A.

Theorem. The general solution of the system of equations (4) is rep-
resented as follows:

2µu+ = κφ(z)− zφ′(z)− ψ(z) +
µ(β1 + β2 + β3)

λ+ 2µ
(f ′(z) + f ′(z))

+
4µ

λ+ 2µ
∂z̄[δ1χ1(z, z̄) + δ2χ2(z, z̄)],

2µω =
2µ

ν + β
χ(z, z̄)− κ + 1

2
i(φ′(z) + φ′(z)),

where κ = λ+3µ
λ+µ

, δα := l1α
κα
β1 +

l2α
κα
β2 +

l3α
κα
β3, φ(z) and ψ(z) are arbitrary

analytic functions of a complex variable z in the domain V , χ(z, z̄) is an
arbitrary solution of the Helmholtz equation

4∂z∂z̄χ(z, z̄)− ξ2χ(z, z̄) = 0,

where

ξ2 :=
2µα

(ν + β)(µ+ α)
> 0.

For combinations of stress tensor components we obtain the following
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formulas

σ11 + σ22 + i(σ12 − σ21) = 2
[
φ′(z) + φ′(z) + 2i∂z∂z̄χ(z, z̄)

]
+
2µ(β1 + β2 + β3)

λ+ 2µ
(f ′(z) + f ′(z))

− 8µ

λ+ 2µ
∂z∂z̄ [δ1χ1(z, z̄) + δ2χ2(z, z̄)] ,

σ11 − σ22 + i(σ12 + σ21) = 2
[
−zφ′′(z)− ψ′(z) + 2i∂z̄∂z̄χ(z, z̄)

]
+
2µ(β1 + β2 + β3)

λ+ 2µ
zf ′′(z) +

8µ

λ+ 2µ
∂z̄∂z̄ [δ1χ1(z, z̄) + δ2χ2(z, z̄)] ,

µ13 + iµ23 = 2∂z̄χ(z, z̄) +
(κ + 1)(ν + β)

2µ
iφ′′(z),

µ31 + iµ32 =
2(ν − β)

ν + β
∂z̄χ(z, z̄) +

(κ + 1)(ν − β)

2µ
iφ′′(z).

(5)

Let mutually perpendicular unit vectors l and s be such that

l× s = e3,

where e3 is the unit vector directed along the x3-axis. The vector l forms the
angle ϑ with the positive direction of the x1-axis. Then the displacement
components ul = u · l, us = u · s, as well as the stress and moment stress
components acting on an area of arbitrary orientation are expressed by the
formulas

ul + ius = e−iϑu+,

σll+ iσls = 0.5[σ11+σ22+ i(σ12−σ21)+(σ11−σ22+ i(σ12+σ21))e−2iϑ], (6)

µl3 = 0.5[(µ13 + iµ23)e
−iϑ + (µ13 − iµ23)e

iϑ].

3. A problem for a circle

In this section, we solve a concrete boundary value problem for a circle
with radius R (see fig. 1). On the boundary of the considered domain
stresses, moment stresses and the values of pressures p1, p2, p3 are given.

We consider the following problem

pi =
+∞∑
−∞

Aine
inϑ, |z| = R, i = 1, 2, 3 (7)

σrr − iσrϑ =
+∞∑
−∞

Bne
inϑ, |z| = R, (8)

µr3 =
+∞∑
−∞

Cne
inϑ, |z| = R. (9)
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Fig. 1.

The analytic function f(z) and the metaharmonic functions χ1(z, z̄),
χ2(z, z̄) are represented as the series

f(z) =
+∞∑
n=1

cnz
n, χ1(z, z̄) =

+∞∑
n=0

αnIn(rκ1),

χ2(z, z̄) =
+∞∑
n=0

βnIn(rκ2),

(10)

where In(rζ) are modified Bessel function of n-th order, z = reiϑ, and are
substituted in the boundary conditions (7) we have

+∞∑
n=1

nRn−1
(
cne

i(n−1)ϑ + c̄ne
−i(n−1)ϑ

)
+ li1

+∞∑
−∞

αnIn(Rκ1)e
inϑ

+li2

+∞∑
−∞

βnIn(Rκ2)e
inϑ =

+∞∑
−∞

Aine
inϑ, i = 1, 2, 3.

(11)

Compare the coefficients at identical degrees. We obtain the following sys-
tem of equations

{
c1 + c̄1 + li1I0α0 + li2I0β0 = Ai0, i = 1, 2, 3
nRn−1an + li1In−1αn−1 + li2βn−1 = Ain−1, i = 1, 2, 3.

(12)

The coefficients cn, αn, βn are found by solving (11).

Let us now satisfy the boundary conditions (8), (9). Due to the general
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representations (5) and (6) obtained above we have

σrr − iσrϑ = φ′(z) + φ′(z)− e2iϑ (z̄φ′′(z) + ψ′(z))

+
iξ2

2

(
χ(z, z̄)− 4

ξ2
∂z∂zχ(z, z̄)e

2iϑ)

)
− 8µ

λ+ 2µ

(
δ1κ1
4
χ1(z, z̄) +

δ2κ2
4
χ2(z, z̄)

)
+

8µ

λ+ 2µ
∂z∂z(δ1χ1(z, z̄) + δ2χ2(z, z̄))e

2iϑ

−µ(β1 + β2 + β3)

λ+ 2µ

(
f ′(z) + f ′(z)− z̄f ′′(z)e2iϑ

)
=

+∞∑
−∞

Bne
inϑ,

(13)

µr3 =
(κ + 1)(ν + β)i

4µ

(
φ′′(z)e−iϑ − φ′′(z)eiϑ

)
+∂z̄χ(z, z̄)e

−iϑ + ∂zχ(z, z̄)e
iϑ =

+∞∑
−∞

Cne
inϑ.

(14)

The analytic functions φ(z) and ψ(z) are represented as the series

φ′(z) =
∞∑
n=1

anz
n, ψ′(z) =

∞∑
n=0

bnz
n, χ(z, z̄) =

∞∑
−∞

γnIn(ξr)e
inϑ

and are substituted in the boundary conditions (8), (9) so we have[
+∞∑
n=1

(1− n)rnane
inϑ +

+∞∑
n=1

(1− n)rnāne
−inϑ −

+∞∑
n=0

rn−2bn−2e
−inϑ

+
iξ2

2

∞∑
−∞

(In(ξr)− In−2(ξr))γne
−inϑ

]
r=R

= B′
n,

(15)

[
(κ + 1)(ν + β)i

4µ

+∞∑
n=1

nrn−1āne
−inϑ +

+∞∑
n=1

nrn−1ane
inϑ

+
ξ

2

∞∑
−∞

(In+1(ξr) + In−1(ξr))γne
inϑ

]
r=R

= C ′
n,

(16)

where

B′
0 = B0 −

8µ

λ+ 2µ

[
δ1κ1
4
α0I0(κ1R) +

δ2κ2
4
β0I0(κ2R)

]
+

8µ

λ+ 2µ

[
δ1κ

2
1

4
α0I2(κ1R) +

δ2κ
2
2

4
β0I2(κ2R)

]
+
µ(β1 + β2 + β3)

λ+ 2µ
6R2c̄3,
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B′
1 = B1 −

8µ

λ+ 2µ

[
δ1κ1
4
α1I1(κ1R) +

δ2κ2
4
β1I1(κ2R)

]
+

8µ

λ+ 2µ

[
δ1κ

2
1

4
α1I1(κ1R) +

δ2κ
2
2

4
β1I1(κ2R)

]
+

2µR(β1 + β2 + β3)

λ+ 2µ
(c2 − c̄2),

B′
n = Bn −

8µ

λ+ 2µ

[
δ1κ1
4
αnIn(κ1R) +

δ2κ2
4
βnIn(κ2R)

]
+

8µ

λ+ 2µ

[
δ1κ

2
1

4
α1In−2(κ1R) +

δ2κ
2
2

4
β1In−2(κ2R)

]
+
µRn(β1 + β2 + β3)

λ+ 2µ
(n+ 1)cn+1, n > 1,

B′
n = Bn −

8µ

λ+ 2µ

[
δ1κ1
4
αnIn(κ1R) +

δ2κ2
4
βnIn(κ2R)

]
+

8µ

λ+ 2µ

[
δ1κ

2
1

4
α1In−2(κ1R) +

δ2κ
2
2

4
β1In−2(κ2R)

]
+
µβ1 + β2 + β3)

λ+ 2µ
[(n+ 1)Rnc̄n+1 − (n+ 2)(n+ 3)Rn+2c̄n+3), n < 0.

Equating the coefficients of einϑ in (15) and (16), we obtain the following
system of equations:

(1− n)Rnan −Rn−2bn−2 +
iξ2

2
(In(ξR)− In−2(ξR)γn = B′

n, (17)

Rnan −
iξ2

2
(In(ξR)− In+2(ξR))γn = B̄′

−n, (18)

−(κ + 1)(ν + β)i

4µ
nRn−1an +

ξ

2
(In−1(ξR) + In+1(ξR))γn = C̄−n. (19)

The coefficients an and γn are found by solving (18), (19):

an =
∆1

∆
, γn =

∆2

∆
,

where

∆ =
ξRn

2
(In−1(ξR)+In+1(ξR))+

(κ + 1)(ν + β)ξ2nRn−1

8µ
(In(ξR)−In+2(ξR)),

∆1 =
ξB̄′

−n

2
(In−1(ξR) + In+1(ξR)) +

C̄−niξ
2

2
(In(ξR)− In+2(ξR)),

∆2 = RnC̄−n +
(κ + 1)(ν + β)inRn−1

4µ
B̄′

−n.

The coefficients bn may be found from formulae (17)

bn = (1− n)R2an+2 +
iξ2

2Rn
(In+2(ξR)− In(ξR))γn+2 −

B′
n+2

Rn
.
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It is easy to prove the absolute and uniform convergence of the series
obtained in the circle (including the contours) when the functions set on
the boundaries have sufficient smoothness.
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