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ble layer potentials are obtained. Finally the basic properties of these potentials
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1. Introduction

In recent years the concept of porous media has been used in many ar-
eas of applied science (e.g., biology, biophysics, biomechanics, geomechanics,
the petroleum industry, chemical engineering, soil mechanics and engineer-
ing). The theory of thermoelasticity for double porosity materials combines
the theory of heat conduction with poroelastic constitutive equations, cou-
pling the temperature field with the stresses and the pore and fissure fluid
pressure.

The theory of consolidation with double porosity was first proposed by
Aifantis and co-authors in [1-3]. This theory unifies a model proposed by
Biot [4] for the consolidation of deformable single porosity media with a
model proposed by Barenblatt [5] for seepage in undeformable media with
two degrees of porosity (see [1],[2],[3] and the references cited therein.) The
basic results on the theory of porous media and the historical development
of porous media theory may be found in [6],[7].

Great attention has been paid to the theories of poroelasticity taking
into account the thermal effect. The basic equations of the thermo-hydro-
mechanical coupling theories for elastic materials with double porosity were
presented in [8,9,10,11.]

In [12] the fundamental solution for the system of steady vibrations and
equilibrium equations are constructed by means of elementary functions.

The phenomenological equations of the quasi-static theory for double
porous media are established in [13,14] where a method to calculate the
relevant coefficients is also presented.

The problem of elastic bodies with double porosity was the subject of
study for some papers more than fifty years ago. Many authors have in-
vestigated the BVPs of the theory of elasticity for materials with double
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porosity, that are published in a large number of papers (some of these
results can be seen in [15-28] and references therein).

In this paper the 2D linear theory of thermoelasticity for materials with
double porosity is considered. There the fundamental and singular matrices
of solutions are constructed in terms of elementary functions. The single
and double layer potentials are obtained. Finally the basic properties of
these potentials are established.

2. The basic fundamental matrix

Let x = (x1, x2) be a point of the Euclidean 2D space R2. Let D+

be a bounded 2D domain (surrounded by the curve S) and let D− be the

complement of D+∪S. ∂x =

(
∂

∂x1

,
∂

∂x2

)
. Let us assume that the domain

D+ is filled with an isotropic material with double porosity.
The system of homogeneous equations in the 2D linear equilibrium the-

ory of thermoelasticity for solids with double porosity can be written as
follows [8,9]

µ∆u + (λ + µ)grad divu− grad(β1p1 + β2p2 + γ0θ) = 0,

(k1∆− γ)p1 + γp2 = 0, γp1 + (k2∆− γ)p2 = 0, k∆θ = 0, (1)

where u = (u1, u2)
T is the displacement vector in a solid, p1 and p2 are the

pore and fissure fluid pressures respectively. θ is a temperature, β1 and β2

are the effective stress parameters, γ > 0 is the internal transport coefficient
and corresponds to fluid transfer rate with respect to the intensity of flow
between the pore and fissures, λ, µ, k, k1, k2, γ0 are all constitutive
coefficients, ∆ is the Laplacian operator. The superscript ”T” denotes
transposition.

We introduce the following matrix differential operator

A(∂x) =‖ Alj(∂x) ‖5x5, l, j = 1, 2, 3, 4, 5,

where

Alj := δljµ∆ + (λ + µ)
∂2

∂xl∂xj

, l, j = 1, 2,

Aj3 := −β1
∂

∂xj

, Aj4 := −β2
∂

∂xj

, Aj5 := −γ0
∂

∂xj

, j = 1, 2,

A3j := 0, j = 1, 2 A33 := k1∆− γ, A34 := γ, A35 := 0,

A4j := 0, A43 := γ, A44 := k2∆− γ, A45 := 0,

A5j := 0, j = 1, 2, 3, 4, A55 := k∆.
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δαγ is the Kronecker delta. Then system (1) can be rewritten as

A(∂x)U = 0, (2)

where U = (u1, u2, p1, p2, θ)
T .

We assume that µµ0kk1k2 6= 0, where µ0 := λ + 2µ. Obviously,
if the last condition is satisfied, then A(∂x) is the elliptic differential
operator. We will throughout suppose that this assumption holds true.

In the sequel the fundamental matrix of operator A(∂x) will be con-
structed in terms of elementary functions. To this end we consider the
system of the equation

µ∆u + (λ + µ)grad divu = 0,

−β1divu + (k1∆− γp1 + γp2 = 0,

−β2divu + γp1 + (k2∆− γp2 = 0,

−γ0divu + k∆θ = 0.

The latter system may be written in the form

AT (∂x)U = 0, (3)

where AT (∂x) is the transpose of matrix A(∂x).
We introduce the matrix differential operator B(∂x) consisting of cofac-

tors of elements of the matrix AT divided on µµ0kk1k2:

B(∂x) =
1

µµ0kk1k2

‖ Blj(∂x) ‖4x4, l, j = 1, 2, 3, 4,

where

Bij = kk1k2[µ0δij∆− (λ + µ)ξiξj]∆∆(∆− λ2
1), i, j = 1, 2,

Bj3 = µk∆2[β1k2∆− γ(β1 + β2)]ξj, j = 1, 2, ξj =
∂

∂xj

,

Bj4 = µk∆2[β2k1∆− γ(β1 + β2)]ξj, j = 1, 2,

Bj5 = µγ0k1k2∆
2(∆− λ2

1)ξj, B3j = B4j = B5j = 0, j = 1, 2,

B35 = B45 = B54 = B53 = 0, B55 = µµ0k1k2∆
3(∆− λ2

1),

B33 = µµ0k∆3(k2∆− γ), B34 = B43 = −γµµ0k∆3,

B44 = µµ0k∆3(k1∆− γ).
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Substituting the vector U(x) = B(∂x)Ψ into (2), where Ψ is a five-component
vector function, we get

∆∆∆∆(∆− λ2
1)Ψ = 0, λ2

1 =
γ(k1 + k2)

k1k2

.

From here, after some calculations, we obtain

∆∆Ψ =
ϕ1 − ϕ

λ4
1

− ϕ0

λ2
1

, (4)

where

ϕ0 =
r2(ln r − 1)

4
, ϕ = ln r, ϕ1 =

π

2i
H

(1)
0 (λ1r),

H
(1)
0 (λ1r) is Hankel’s function of the first kind with the index 0

H
(1)
0 (λ1r) =

2i

π
J0(λ1r) ln r +

2i

π

(
ln

λ1

2
+ C − iπ

2

)
J0(λ1r)

−2i

π

∞∑

k=1

(−1)k

(k!)2

(
λ1r

2

)2k (
1

k
+

1

k − 1
+ ... + 1

)
,

(5)

J0(λ1r) =
∞∑

k=0

(−1)k

(k!)2

(
λ1r

2

)2k

, r2 = (x1 − y1)
2 + (x2 − y2)

2.

Substituting (4) into U = BΨ, we obtain the matrix of fundamental solu-
tions for equation (2) which we denote by Γ(x-y)

Γ(x-y) =‖ Γkj(x-y) ‖5×5 l, j = 1, 2, 3, 4, 5. (6)

The elements Γkj have the following form

Γkj =
δkj

µ
ϕ− λ + µ

µµ0

∂2ϕ0

∂xk∂xj

, k, j = 1, 2,

Γj3 =
1

µ0k1k2

∂

∂xj

[(
β1k2 − γ(β1 + β2)

λ2
1

)
ϕ1 − ϕ

λ2
1

+ γ(β1 + β2)
ϕ0

λ2
1

]
,

Γj4 =
1

µ0k1k2

∂

∂xj

[(
β2k1 − γ(β1 + β2)

λ2
1

)
ϕ1 − ϕ

λ2
1

+ γ(β1 + β2)
ϕ0

λ2
1

]
,

Γj5 =
γ0

µ0k

∂ϕ0

∂xj

, Γ33 =
ϕ1

k1

− γ

k1k2

ϕ1 − ϕ

λ2
1

,

Γ34 = Γ43 = − γ

k1k2

ϕ1 − ϕ

λ2
1

, Γ44 =
ϕ1

k2

− γ

k1k2

ϕ1 − ϕ

λ2
1

,

Γ45 = Γ53 = Γ54 = 0, Γ55 =
ϕ

k
.



On Some Solutions in the Theory of Thermoelasticity for ... 13

It is evident that all elements of Γ(x-y) have a logarithmic singularity at
most. It can be shown that columns of the matrix Γ(x-y) are solutions to
the system (1) with respect to x for any x 6= y. By applying the methods,
as in the classical theory of elasticity, we can similarly prove the following;

Theorem 1. The elements of the matrix Γ(x-y) has a logarith-
mic singularity as x → y and each column of the matrix Γ(x-y),
considered as a vector, is a solution of the system (1) at every point x, if
x 6= y.

Remark. The operator A(∂x)U is not self adjoint. Obviously, it
is possible to construct the fundamental solution of adjoined operator in
quite a similar manner. Let’s consider the matrices Γ̃(x) := ΓT (−x) and

Ã(∂x) := AT (−∂x). The following basic properties of Γ̃(x) may be
easily verified:

Theorem 2. Each column of the matrix Γ̃(x-y), considered as a

vector, satisfies the associated system Ã(∂x)Γ̃(x-y) = 0, at every point

x, if x 6= y and the elements of the matrix Γ̃(x-y) have a logarithmic
singularity as x → y.

3. Matrix of singular solutions

Using the matrix of fundamental solutions, we construct the so-called
singular matrices of solutions by means of elementary functions.

We introduce the stress vector P(∂x,n)U which acts on the elements of
the S with the normal n,

P(∂x,n)U = T(∂x,n)u− n(β1p1 + β2p2 + γ0θ), (7)

where T(∂x,n)u is the stress vector in the classical theory of elasticity

T (∂x,n)u =




µ
∂

∂n
+ (λ + µ)n1

∂

∂x1

(λ + µ)n1
∂

∂x2

+ µ
∂

∂s

(λ + µ)n2
∂

∂x1

− µ
∂

∂s
µ

∂

∂n
+ (λ + µ)n2

∂

∂x2


u,

∂

∂s
= n2

∂

∂x1

− n1
∂

∂x2

,
∂

∂n
= n1

∂

∂x1

+ n2
∂

∂x2

.

We now introduce the following matrix-differential operators

R(∂x,n) :=




T11 T12 − n1β1 − n1β2 − n1γ0

T21 T22 − n2β1 − n2β2 − n2γ0

0 0 k1
∂

∂n
0 0

0 0 0 k2
∂

∂n
0

0 0 0 0 k ∂
∂n




, (8)
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and

R̃(∂x,n) :=




T11(∂x, n) T12(∂x, n) 0 0 0

T21(∂x, n) T22(∂x, n) 0 0 0

0 0 k1
∂

∂n
0 0

0 0 0 k2
∂

∂n
0

0 0 0 0 k
∂

∂n




, (9)

Applying the operator R(∂x,n) to the matrix Γ(x-y), we construct
the so-called singular matrix of solutions

R(∂x,n)Γ(x-y) =‖ mlj(x-y) ‖5×5 l, j = 1, 2, 3, 4, 5.

where

m11 =
∂ϕ

∂n
− 2

λ + µ

µ0

∂

∂s

∂2ϕ0

∂x1x2

, m12 =
∂ϕ

∂s
− 2

λ + µ

µ0

∂

∂s

∂2ϕ0

∂x2
2

,

m21 = −∂ϕ

∂s
+ 2

λ + µ

µ0

∂

∂s

∂2ϕ0

∂x2
1

, m22 =
∂ϕ

∂n
+ 2

λ + µ

µ0

∂

∂s

∂2ϕ0

∂x1x2

,

m13 =
2µ

µ0k1

∂

∂s

∂

∂x2

[
β1

ϕ1 − ϕ

λ2
1

− γ(β1 + β2)

k2

(
ϕ1 − ϕ

λ4
1

− ϕ0

λ2
1

)]
,

m23 = − 2µ

µ0k1

∂

∂s

∂

∂x1

[
β1

ϕ1 − ϕ

λ2
1

− γ(β1 + β2)

k2

(
ϕ1 − ϕ

λ4
1

− ϕ0

λ2
1

)]
,

m14 =
2µ

µ0k2

∂

∂s

∂

∂x2

[
β2

ϕ1 − ϕ

λ2
1

− γ(β1 + β2)

k1

(
ϕ1 − ϕ

λ4
1

− ϕ0

λ2
1

)]
,

m24 = − 2µ

µ0k2

∂

∂s

∂

∂x1

[
β2

ϕ1 − ϕ

λ2
1

− γ(β1 + β2)

k1

(
ϕ1 − ϕ

λ4
1

− ϕ0

λ2
1

)]
,

m15 =
2µγ0

µ0k

∂

∂s

∂ϕ0

∂x2

, m25 = −2µγ0

µ0k

∂

∂s

∂ϕ0

∂x1

,

m34 = − γ

k2

∂

∂n

ϕ1 − ϕ

λ2
1

, m43 = − γ

k1

∂

∂n

ϕ1 − ϕ

λ2
1

,

m33 =
∂

∂n

[
ϕ1 − γ

ϕ1 − ϕ

k2λ2
1

]
, m44 =

∂

∂n

[
ϕ1 − γ

ϕ1 − ϕ

k1λ2
1

]
,

m55 =
∂ϕ

∂n
, m31 = m32 = m41 = m42 = m51

= m52 = m35 = m53 = m54 = m45 = 0.

(10)
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In the some manner, we can obtain

R̃(∂x,n)ΓT (y-x) =‖ m̃lj(x-y) ‖5×5, l, j = 1, 2, 3, 4, 5.

where

m̃ij = mij, m̃3j = −k1
∂Γj3

∂n
, m̃4j = −k2

∂Γj4

∂n
, m̃5j = −k

∂Γj5

∂n
, j = 1, 2,

m̃33 = m33, m̃43 = m43, m̃34 = m34, m̃44 = m44, m̃55 = m55,

m̃i3 = m̃i4 = m̃i5 = m̃53 = m̃54 = 0. i = 1, 2.

Let [R(∂y,n)Γ(y-x)]T , be the matrix which we get from [R(∂x,n)Γ(x-y)]
by transposition of the columns and rows and the variables x and y (anal-

ogously
[
R̃(∂y,n)ΓT (y-x)

]T

).

Let us introduce the following single-layer and double-layer potentials :

The vector-functions defined by the equalities

V(x;g) =
1

π

∫

S

Γ(x− y)g(y)dyS,

Ṽ (x;g) =
1

π

∫

S

ΓT (y− x)g(y)dyS

will be called single- layer potentials, while the vector-functions defined by
the equalities

W(x;h) =
1

π

∫

S

[R(∂y,n)Γ(y− x)]T h(y)dyS,

W̃ (x;h) =
1

π

∫

S

[
R̃(∂y,n)ΓT (y− x)

]T

h(y)dyS

will be called double layer potentials. Here g and h are the continuous (or
Hölder continuous) vectors and S is a closed Lyapunov curve S ∈ C1,α.

We can state the following:
Theorem 3. The vectors Ṽ (x;g) and W(x;h) are the solutions of the

system Ã(∂x)U = 0 at any point x and x 6= y. The vectors V(x;g) and

W̃ (x;h) are the solutions of the system A(∂x)U = 0 at any point x and x 6=
y. The elements of the matrices [R(∂y,n)Γ(y− x)]T and

[
R̃(∂y,n)ΓT (x− y)

]T

contain a singular part, which is integrable in the sense of the Cauchy prin-
cipal value.
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Theorem 4. If S ∈ C1,η(S), g,h ∈ C0,δ(S), 0 < δ < η ≤ 1, then

the vectors W(x,h), V(x,g), W̃ (x,h) and Ṽ (x,g) are the regular vector-
functions in D+(D−), and when the point x tends to any point z of the
boundary S from inside or from outside we have the following formulas:

[W(z,h)]± = ∓h(z) +
1

π

∫

S

[R(∂y,n)Γ(y− z)]T h(y)dyS,

[W̃ (z,h)]± = ∓h(z) +
1

π

∫

S

[
R̃(∂y,n)ΓT (y− z))

]T

h(y)dyS,

[R(∂z,n)V(z,g)]± = ±g(z) +
1

π

∫

S

R(∂z,n)Γ(z− y)g(y)dyS,

[R̃(∂z,n)Ṽ (z,g)]± = ±g(z) +
1

π

∫

S

R̃(∂z,n)ΓT (y− z)g(y)dyS.

Here the integrals are singular and understood as the principal value.
Theorems 1 and 2 can be proved similarly to the corresponding theorems

in the classical theory of elasticity (for details see [29]).

4. The Green’s formulas

Let the vector u(u1, u2), the functions p1, p2 and θ be the regular solu-
tions of equations (1),(2) in D+. Multiply the equation (1) by u, the first
equation of (2) by p1, the second by p2, and the third by θ0. Integrating
over D+ and summing the results, we arrive at

∫

D+

[E(u,u)− (β1p1 + β2p2 + γ0θ)divu]dx =

∫

S

uP

(
∂

∂y
,n

)
UdyS,

∫

D+

[
k1(gradp1)

2 + k2(gradp2)
2
]
dx

+

∫

D+

[γ(p1 − p2)
2 =

∫

S

pP(1)

(
∂

∂y
,n

)
pdyS,

∫

D+

gradθgradθ0dyS =

∫

S

θ
∂θ0

∂n
dyS,

(11)

where

E(u,u) = (λ + µ)(divu)2 + µ

(
∂u1

∂x1

− ∂u2

∂x2

)2

+ µ

(
∂u2

∂x1

+
∂u1

∂x2

)2

.

P(1)

(
∂

∂x
,n

)
p(x) =

(
k1 0
0 k2

)
∂p(x)

∂n
, p = (p1, p3) (12)
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Formula (11) can be generalized to an unbounded domain D−, if the con-
ditions

lim
R1→∞

∫

S(0,R1)

uP

(
∂

∂y
,n

)
UdyS = 0, (13)

lim
R1→∞

∫

S(0,R1)

(
k1p1

∂p1

∂n
+ k2p2

∂p2

∂n

)
dyS = 0

are fulfilled, where S(0, R1) is the circle centered at the origin and with the
radius R1; we assume that (0, 0) ∈ D+ and S(0, R1) envelopes the domain
D+. Clearly, if the conditions (13) hold, we have the following formula for
the unbounded domain D−

∫

D−

[E(u,u)− (β1p1 + β2p2 + γ0θ)divu]dx= −
∫

S

uP

(
∂

∂y
,n

)
UdyS,

∫

D−

[
k1(gradp1)

2 + k2(gradp2)
2
]
dx

+

∫

D−

[γ(p1 − p2)
2 = −

∫

S

pP(1)

(
∂

∂y
,n

)
pdyS,

∫

D−

gradθgradθ0dyS = −
∫

S

θ
∂θ0

∂n
dyS,

(14)

We assume that the constitutive coefficients satisfy the inequalities

k1 > 0, k2 > 0, γ > 0, µ > 0, λ + µ > 0.

and the vector U(x) satisfies the following conditions at the infinity:

U(x) = O(1),
∂U

∂xα

= O(|x|−2), |x|2 = x2
1 + x2

2 >> 1, α = 1, 2. (15)
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