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Abstract. In the present paper we consider the two-dimensional system of dif-

ferential equations describing plane thermoelastic equilibrium for elastic bodies

of Cosserat with microtemperature. The general solution of this system of equa-

tions is constructed using analytical functions of a complex variable and solutions

of the Helmholtz equation.
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1. Introduction

We consider the two-dimensional system of differential equations describ-
ing plane thermoelastic equilibrium for elastic bodies of Cosserat with mi-
crotemperature. The foundations of the three-dimensional micro-thermoela-
sticity theory were laid down in [1-5]. Various issues of termoelastic equi-
librium of isotropic homogeneous bodies taking into account the microtem-
perature are devoted to [6-12]. The work, which considered problems of
microthermoelasticity for asymmetrical elastic Cosserat medium [13-19] are
unknown to us. In our opinion, such problems represent theoretical and
practical interest. Therefore, we have considered thermoelastic equilibrium
of elastic bodies in the case of asymmetric Cosserat theory.

2. Basic relations of plane linear theory of thermoelasticity
taking into account micro-temperature

Let the homogeneous isotropic cylindrical body be related to the Carte-
sian coordinate system of coordinates x1, x2, x3 in such a way that the gen-
eratrix coincides with the direction of the axis x3. If in this case the temper-
ature variation T , as well as components of the displacement vector u1, u2,
the component of the rotation vector ω, and the vector components of mi-
crotemperature w1, w2 along axes x1, x2, x3 don’t depend on coordinates x3,
besides, components of movement and microtemperature along x3 (u3 and
w3 respectively), as well as components of the rotation along the axis x1
and x2 (w1 and w2 ) are equal to zero, then there is the case of plane strain
thermoelastic state of Cosserat medium. Then the homogeneous equations
of static equilibrium in a domain ω which is cross-section of the body under
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consideration, will have the form [6], [19]

(µ+ α)∆uj + (λ+ µ− α)∂jθ + 2α∂3−jω − γ∂jT = 0,

(ν + β)∆ω + 2α(∂1u2 − ∂2u1)− 4αω = 0,

k∆T + k1ϑ = 0,

(1)

k6∆wj + (k4 + k5)∂jϑ− k3∂jT − k2wj = 0, j = 1, 2,

where λ and µ are the Lamé constants;
α, β, ν are the constants characterizing the microstructure of the con-

sidered elastic medium; ∆ = ∂11 + ∂22 is the two-dimensional Laplace op-
erator; ∂1 ≡ ∂

∂x1
, ∂2 ≡ ∂

∂x2
; γ is the coefficient depending on the thermal

properties of the material; k1, k2, . . . , k6 are constants characterizing micro-
thermoelastic properties of the material; k is the coefficient of thermal con-
ductivity; θ = ∂1u1 + ∂2u2, ϑ = ∂1w1 + ∂2w2.

3. The general solution of system (1)

On the plane Ox1x2 a complex variable z = x1+ ix2, where i the imagi-
nary unit, and the following operators ∂z = 0.5(∂1− i∂2), ∂z̄ = 0.5(∂1+ i∂2)
are introduced. Then the system consisting of the last three equations (1)
can be written in complex form as follows

k6∆w+ + 2(k4 + k5)∂z̄ϑ− k3∂z̄T − k2w+ = 0,

k∆T + k1ϑ = 0,
(2)

where ∆ = 4∂z∂z̄; w+ := w1 + iw2;
For the positive definiteness of the corresponding quadratic form will

satisfy the conditions [6]

k4 + k5 + k6 > 0, k2 > 0, k1k3 − kk2 < 0, k > 0.

In [11] it is shown that the general solution of system (2) is represented as
follows:

w+ = −φ′(z) + ∂z̄[χ1(zz̄) + iχ2(zz̄)], (3)

T =
k1
2k3

[φ(z) + φ(z)]− k1
2k
χ1(zz̄). (4)

where φ(z) is an arbitrary analytic function of a complex variable; χ1(zz̄)
is a general solution of the following Helmholtz equation ∆χ1 − k∗χ1 =
0, ; k∗ = k2k−k1k3

k(k4+k+5+k6)
> 0; χ2(zz̄) is a general solution of the following

Helmholtz equation ∆χ2 − k̃χ2 = 0, k̃ = k2
k6
.

The first three equations of (1) written in complex form will have the
form [20], [16]{

2(µ+ α)∂z̄∂zu+ + (λ+ µ− α)∂z̄θ − 2αi∂z̄ω3 − γ∂z̄T = 0,

2(ν + β)∂z̄∂zω + 2αi(θ − 2∂zu+)− 2αω = 0,
(5)
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where u+ = u1 + iu2, θ = ∂zu+ + ∂z̄ū+.
Let’s factor out the operator ∂barz from the brackets in the left part of

equation (5)

∂z̄(2(µ+ α)∂zu+(λ+ µ− α)θ − 2αiω3 − γT ) = 0. (6)

therefore (6) is a system of the equations of Cauchy-Riemann

2(µ+ α)∂zu+ + (λ+ µ− α)θ − 2αiω = (k + 1)ϕ′(z) + γT. (7)

where ϕ(z) are the arbitrary analytical functions of a complex variable z;
k = λ+3µ

λ+µ

The conjugate expression of equations (7) will have the form

2(µ+ α)∂z̄ū+ + (λ+ µ− α)θ + 2αiω3 = (k + 1)ϕ′(z) + γT. (8)

If we add the formula (7) and (8), and take into account the formula we
will obtain

θ =
1

λ+ µ
(ϕ′(z) + ϕ′(z)) +

γT

λ+ 2µ
. (9)

From (7) and (8) we have

i(∂zu+ − ∂z̄ū+) =
k + 1

2(λ+ α)
i(ϕ′(z)− ϕ′(z))− 2α

µ+ α
ω3. (10)

The second equation of (5) can be written as

4∂z∂z̄ω3 −
2α

ν + β
i(∂zu+ − ∂z̄ū+)−

4α

µ+ β
ω3 = 0. (11)

If we substitute the formula (10) in formula (11) we obtain the following
equation

∆2ω3 − ξ2ω3 =
α(k + 1)

(ν + β)(µ+ α)
i(ϕ′(z)− ϕ′(z)), (12)

where ξ2 = 4µα
(ν+β)(µ+α)

> 0.

The general solution of equation (12) is written as

2µω3 =
2µ

ν + β
η(zz̄)− k + 1

2
i(ϕ′(z)− ϕ′(z)), (13)

where η(zz̄) is a general solution of the Helmoltz equation ∆η − ξ2η = 0.
If we subtituite formulas (9) and (13) in equation (8) and take into

account, that η(zz̄) is a solution of the equation ∆η − ξ2η = 0, we obtain

2µ∂zu+ = kϕ′(z)− ϕ′(z) + 2i∂z∂z̄η(zz̄) +
µ

λ+ 2µ
γT.

When integrating the last formula over z and taking into account this
equation (4), we finally obtain

2µ+ = kϕ(z)− zϕ′(z)− ψ(z) + 2i∂z̄η(zz̄)
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+
µγ

λ+ 2µ

{
k2
2k3

[∫
φ(z)dz + zφ(z)

]
− 2k1
kk∗

∂z̄χ1(z, z̄)

}
. (14)

where ψ(z) is any analytical function of a complex z.

4. Conclusion

Thus, the general solution of (1) is represented by three arbitrary an-
alytic functions of a complex variable φ(z), ϕ(z), ψ(z), and three solutions
of the Helmholtz equations χ1(z, z̄), χ2(z, z̄), η(z, z̄) according to (3), (4),
(13), (14). Using these functions the components of stress tensor, stress
moment and thermal stream are expressed. The appropriate selection of
these functions can satisfy six independent classical boundary conditions.
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