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Abstract. In the paper we consider geometrically nonlinear equations of elastic

balance for binary mixture of two isotropic materials. In the literature the con-

sidered model is called Green-Naghdi-Steel’s model. The main three-dimensional

equations of static balance corresponding to the considered model are recorded

in any curvilinear system of coordinates. The main two-dimensional relations for

the shallow shells consisting of binary mixture are obtained from these equations

using I. Vekua’s reduction method and basing on T. Meunargia’s works.
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1. Introduction

Fundamentals of the theory of elastic mixtures were founded in the six-
ties of the last century. The basic mechanical principles of the deformable
medium with complex internal structure were formulated in works of K.
Truesdell and R. Toupin [1,2]. Subsequenty this theory was generalized
and developed in many directions. The nonlinear model of mixture of two
solid isotropic materials considered in this work was developed in [3-7]. The
mentioned model of elastic mixtures relating to three-dimensional spatial co-
ordinates, in honor of her founders, bears the name of Green-Nagdi-Steel’s
model. A lot of works were devoted to the study of linear problems of
a statics, dynamics and elastic fluctuations for this model by the various
mathematical methods (see eg. [8-11]). Nonlinear problems within the con-
sidered model were also studied [12, 13]. In works of the author [14, 15]
two-dimensional equations for shallow shells were obtained from a linear
three-dimensional theory of mixtures. The method of reduction of I. Vekua
was used [16].

The purpose of this work is to obtain the main equations for geomet-
rically nonlinear shells consisting of mixture of two isotropic materials.
For this purpose the corresponding main three-dimensional relations are
recorded in any curvilinear system of coordinates. The same method of
Vekua generalized in T. V. Meunargia’s works [17-19] for nonlinear prob-
lems (as geometrically and physically) was applied for the reduction.
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2. Complete system of the equations for binary mixture of
elastic materials

Suppose we have a body consisting of two elastic isotropic materials the
reference configuration of which occupies the domain Ω ⊂ R3. If x1, x2, x3

is the rectangular Cartesian system of coordinates, the nonlinear equations
of static equilibrium will have the form [1-3]

{
∂i[σ

′
ij − δijΠ+ (σ′

ik − δik(Π− α))∂ku
′
j] + ρ1F

′
j = 0,

∂i[σ
′′
ij + δijΠ+ (σ′′

ik + δik(Π− α))∂ku
′′
j ] + ρ2F

′′
j = 0,

in Ω (1)

Reaction functions or nonlinear relations corresponding to the general-
ized Hooke’s law have the form

σ′
ij = (−α + λ1ε

′
kk + λ3ε

′′
kk)δij + 2µ1ε

′
ij + 2µ3ε

′′
ij − 2λ5hij

σ′′
ij = (α + λ4ε

′
kk + λ2ε

′′
kk)δij + 2µ3ε

′
ij + 2µ2ε

′′
ij + 2λ5hij,

in Ω (2)

where ∂i ≡ ∂
∂xi

; σ′
ij, σ

′′
ij are components of a tensor of stresses of two compo-

nents of mixture; δij is Kronecker-Delta; Πj ≡ ∂jΠ are so-called interaction
forces of interaction between the two components of mixture

Π =
αρ2
ρ

ε′kk +
αρ1
ρ

ε′′kk, ρ = ρ1 + ρ2;

ρ1 > 0, ρ2 > 0 are partial densities of components of mixture; F ′
ij, F

′′
ij

are components of vectors of mass forces; α, λ1, λ2, λ3, λ4, λ5, µ1, µ2, µ3 are
the elastic constants characterizing mechanical properties of mixture, when
α = λ3 − λ4; ε′ij = ε′ji, ε

′′
ij = ε′′ji are components of tensors of deformations

expressed by means of the formulas

ε′ij =
1

2
(∂iu

′
j + ∂ju

′
i + ∂iu

′
k∂ju

′
k), ε′′ij =

1

2
(∂iu

′′
j + ∂ju

′′
i + ∂iu

′′
k∂ju

′′
k); (3)

hij = −hji are components of rotation tensor of components of mixture

hij =
1

2
(∂iu

′
j − ∂ju

′
i + ∂ju

′′
i − ∂iu

′′
j + ∂iu

′
k∂ju

′′
k − ∂ju

′
k∂iu

′′
k); (4)

u⃗ ′ = (u′
1, u

′
2, u

′
3), u⃗ ′′ = (u′′

1, u
′′
2, u

′′
3) are partial vectors of displacement of

components of mixture.
In the above formulas Latin indexes take the value 1,2,3 and we assume

summation on the repeating indexes. We will assume the same below, but
the Greek indexes will take the value 1,2.

Thus, in the theory of binary mixture two vectors of displacement and
two tensors of deformations and stresses are considered in each point of a
body. In view of the fact that the antisymmetric tensor hij, participates in
the record of Hooke’s law the symmetry of magnitudes σ′

ij and σ′′
ij is broken.
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Let’s introduce the following notation

P ′
ij := σ′

ij − δij(Π− α), P ′′
ij := σ′′

ij + δij(Π− α). (5)

To simplifly the record we will enter also following notation (matrix
columns)

Pij :=(P
′
ij, P

′′
ij)

T , Uj :=(u
′
j, u

′′
j )

T , ϵij :=(ε
′
ij, ε

′′
ij)

T , Hij := (hij, hji)
T . (6)

The relations (1) and (2) considering notation (5) and (6) can be written
as follows

∂i(Pij + Pik ◦ ∂kUj) + Φj = 0 in Ω, (7)

Pij = Λϵ
kk
δ
ij
+ 2Mϵij − 2λ5Hij in Ω, (8)

where
Φj := (ρ1F

′
j , ρ2F

′′
j )

T , U⃗ := (u⃗ ′, u⃗ ′′)T ,

Λ =

 λ1 −
αρ2

ρ
λ3 −

αρ1

ρ

λ4 +
αρ2

ρ
λ1 +

αρ1

ρ

 , M =

(
µ1 µ3

µ3 µ2

)
;

the symbol ◦ denotes the following operation

(a1, a2)
T ◦ (b1, b2)T = (a1b1, a2b2)

T .

Using the obtained notation we represent formulas (3) as follows

ϵij =
1

2
(∂iUj + ∂jUi + ∂iUk ◦ ∂jUk), (9)

and in view of formula (4) we have

Hij =
1

2
S(∂iUj − ∂jUi + ∂iUk ◦ (E∂jUk)), (10)

where the following matrixes are denoted by S and E

S =

(
1 −1
−1 1

)
, E =

(
0 1
1 0

)
.

Substituting the formulas (9) and (10) into formula (8), we will have

Pij = Λ∂kUkδij + (M − λ5S)∂iUj + (M + λ5S)∂jUi

+
1

2
Λ(∂mUk ◦ ∂mUk)δij +M(∂iUk ◦ ∂jUk)− λ5S(∂iUk ◦ (E∂jUk)).

(11)

If e⃗1 , e⃗2 , e⃗3 are unit vectors of the Cartesian system of coordinates, we
can write the relations (7), (9) and (10) we in the vector form

∂i[P⃗
i + (e⃗

k
P⃗ i) ◦ ∂kU⃗)] + Φ⃗ = 0 in Ω, (12)



Derivation of Nonlinear Equations for Shallow .... 15

ϵ
ij
=

1

2
(e⃗j∂iU⃗ + e⃗i∂jU⃗ + ∂iU⃗ ◦ ∂jU⃗), (13)

Hij =
1

2
S(e⃗j∂iU⃗ − e⃗i∂jU⃗ + ∂iU⃗ ◦ (E∂jU⃗)), (14)

where P⃗ i = P ij e⃗j = (P
′ij e⃗j, P

′′ij e⃗j)
T contravariant components of stresses

which coincide with covariant components of stresses in the Cartesian sys-
tem of coordinates;

U⃗ = (u⃗ ′, u⃗ ′′)T = (u′ie⃗i, u
′′ie⃗i)

T ; Φ⃗ = (Φ′ie⃗i,Φ
′′ie⃗i)

T .

In the arbitrary curvilinear system of coordinates x1, x2, x3 of the equa-
tion of equilibrium (12) will take the form

1
√
g
∂i[(

√
gP ijR⃗j + P ik ◦ ∂kU⃗)] + Φ⃗ = 0 in Ω, (15)

where g discriminant of the relative metric square form; R⃗j- covariant basis
vectors.

Really, in case of the Cartesian system of coordinates g = 1 the system
(15) passes into system (12). The first summand of the right part of the
system (15) represents a divergence of the following tensor

T = T ijR⃗i ⊗ R⃗j := (P ij + P ik ◦
◦
∇kU

j)R⃗i ⊗ R⃗j, (16)

where
◦
∇k symbol of a spatial covariant derivative (∂iU⃗ =

◦
∇iU

kR⃗k); ⊗ a
symbol of the tensor product. Thus,

div T =
1
√
g
∂k(

√
gT kjR⃗j).

This last expression is an invariant concerning a choice of spatial system
of coordinates. In the arbitrary system of coordinates we will have also the
formulas analogous to formulas (13) and (14)

ϵ
ij
=

1

2
(R⃗j∂iU⃗ + R⃗i∂jU⃗ + ∂iU⃗ ◦ ∂jU⃗), (17)

H
ij
=

1

2
S(R⃗j∂iU⃗ − R⃗i∂jU⃗ + ∂iU⃗ ◦ (E∂jU⃗)). (18)

Taking into account the following known formulas [16]

R⃗j∂iU⃗ =
◦
∇iUj, ∂iU⃗ =

◦
∇iU

kR⃗k,

we’ll write relations (17) and (18) in the form of

ϵ
ij
=

1

2

( ◦
∇iUj +

◦
∇jUi +

◦
∇iUk ◦

◦
∇jUk

)
, (19)
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H
ij
=

1

2
S
( ◦
∇iUj −

◦
∇jUi +

◦
∇iUk ◦ (E

◦
∇jUk)

)
, (20)

where Uk = (u′k, u′′k)T is the column-matrix consisting of contravariant
components of vectors of displacements.

The relations (8) will take the form

Pij = Λϵk
k
g
ij
+ 2Mϵ

ij
− 2λ5Hij.

If to consider the following equalities [16]

gij = R⃗iR⃗j, (R⃗k∂jU⃗)R⃗k = ∂jU⃗ ,

where R⃗j are contravariant basis vectors, and gij are contravariant com-
ponents of a metric tensor, we have the following expression for a vector
P⃗ i = P i·

·j R⃗
j (P i·

·j the mixed components of stresses tensor),

P⃗ i = Λ(R⃗j∂jU⃗)R⃗i + (M + λ5S)(R⃗
i∂jU⃗)R⃗j + (M − λ5S)(R⃗

iR⃗j)∂jU⃗

+
1

2
Λ(∂kU⃗ ◦ ∂kU⃗)R⃗i +M(∂iU⃗ ◦ ∂jU⃗)R⃗j − λ5S(∂

iU⃗ ◦ (E∂jU⃗))R⃗j,

(21)
where ∂j = gjk∂k.

If we multiphly the scalar product of contravariant basis vector R⃗i to
both sides (16), we’ll obtain the following vector

T⃗ i = T · R⃗i = T ijR⃗j := P⃗ i + P ik ◦ ∂kU⃗

= (P ij + P ik ◦
◦
∇kU

j)R⃗j = P · R⃗i + (P · R⃗i)R⃗k ◦ ∂kU⃗ ,
(22)

where
P = P ijR⃗i ⊗ R⃗j.

Tensors T = (T ′, T ′′)T and P = (P ′, P ′′)T are also called the first and
second stresses tensors of Piola-Kirchhoff. In view of formulas (15) and (17),
we will have the following basic relations for contravariant components of
the first stress tensor of the Piola-Kirchhoff

1
√
g
∂i(

√
gT⃗ i) + Φ⃗ = 0 in Ω, (23)

T⃗ i = Λ(R⃗j∂jU⃗)R⃗i+(M+λ5S)(R⃗
i∂jU⃗)R⃗j+(M−λ5S)(R⃗

iR⃗j)∂jU⃗+N⃗ i, (24)

where the nonlinear part is denoted by N⃗ i

N⃗ i =
1

2
Λ(∂kU⃗ ◦ ∂kU⃗)R⃗i +M(∂iU⃗ ◦ ∂jU⃗)R⃗j − λ5S(∂

iU⃗ ◦ (E∂jU⃗))R⃗j

+[Λ(R⃗j∂jU⃗)] ◦ ∂iU⃗ + [(M + λ5S)(R⃗
i∂jU⃗)] ◦ ∂jU⃗ + [(M − λ5S)

(∂iU⃗R⃗k)] ◦ ∂kU⃗ +
1

2
[Λ(∂kU⃗ ◦ ∂kU⃗)] ◦ ∂iU⃗ + [M(∂iU⃗ ◦ ∂jU⃗)]

◦∂jU⃗ − λ5[S(∂
iU⃗ ◦ (E∂jU⃗))] ◦ ∂jU⃗ .

(25)
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If we reject the nonlinear member N⃗ i in the formula (24) then (23), (24)
will be the equations of static equilibrium of the linear theory of elastic
mixtures in arbitrary curvilinear system of coordinates.

For completeness of relations (23), (24) we have to connect the boundary
conditions. For example, in case of the first and second (the loadings are
assumed dead) main boundary value problems the following conditions are
set respectively on the boundary ∂Ω of the domain Ω

I. U⃗(x1, x2, x3) = U⃗0 on ∂Ω; (26)

II. T(l) := T · l⃗ = T⃗ ili = T ijliR⃗j = T⃗ 0
(l) on ∂Ω, (27)

where U⃗0, T⃗ 0
(l) are vector functions defined on the boundary, l⃗ = (l1, l2, l3)

are external normals to a surface ∂Ω.

3. Reduction of three-dimensional relations (23)-(27)

Suppose Ω is a shell with thickness 2h symmetric to its middle surface
ω. h it is a positive bounded sufficiently smooth function of the point of the
surface ω. ω is a sufficiently by smooth bilateral surface. Let’s denote the
side surfaces of a shell by Γ. Surfaces of ω and Γ are crossed at right angle
in each point. We assume that thickness 2h is much less in comparison with
other sizes of a shell.

We consider the coordinate system normally connected with a middle of
surface. In this system the radius vector R⃗ of any point M of the domain
Ω is expressed by means of the formula (see fig. 1)

R⃗ = r⃗(x1, x2) + x3n⃗(x1, x2),

where x1, x2 are Gaussian parameters of the surface ω ; r⃗ and n⃗ are radius
vector and unit vector normal to the surface at the point x1, x2 ∈ ω. x3 is
the relative length from the point M to the surface ω.

Fig. 1. The considered shell of variable thickness
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Our goal is to carry out a reduction of three-dimensional relations (23)-
(27) to two-dimensional system using I. N. Vekua’s method and to obtain
two-dimensional relations for the shallow shells consisting of a mixture of
two elastic materials.

We multiply both members of equilibrium equations (19) by functions

(
k +

1

2

)1
h
Pk

(x3

h

)√g

a
, k = 0, 1, . . . ,

where Pk

(
x3

h

)
is the Legandre polynomials of order k; a is the discriminant

of quadratic form of surface ω.
We integrate both parts of the obtained relations by the thickness of

the coordinates x3 from −h to h. The conditions for stresses are satisfied
on the surfaces x3 = h and x3 = −h(ω− and ω+, respectively) of a shell.
As a result we obtain the following infinite system of the equations for the
functions of two variables x1, x2

1√
a
∂α

(
√
a
(k)

T⃗α

)
+ ∂α lnh

(k)

T⃗α

=
− 1

h

(k)

T⃗ 3

−
+

(k)

F⃗ = 0, k = 0, 1, . . . , (28)

where
(k)

T⃗ j =
(
k +

1

2

)1
h

h∫
−h

√
g

a
T⃗ jPk

(x3

h

)
dx3;

(k)

T⃗ 3

−
= (2k + 1)

(
(k−1)

T⃗ 3 +
(k−3)

T⃗ 3 + . . .

)
,

(k)

T⃗α

=
= (k + 1)

(k)

T⃗α + (2k + 1)

(
(k−2)

T⃗α +
(k−4)

T⃗α + . . .

)
,

(−n)

T⃗ j = 0,

when n > 0;

(k)

F⃗ =
(
k +

1

2

)1
h

h∫
−h

√
g

a
Φ⃗Pk

(x3

h

)
dx3 +

(
k +

1

2

)1
h

{√
g+

a
[T⃗ 3

+ − ∂ahT⃗
a
+
]− (−1)k

√
g+

a
[T⃗ 3

− + ∂αhT⃗
a
− ]

}
;

by lower symbols “+” and “–” are denoted the values of the top and bottom
surfaces of the shell.

The infinite system of equations (28) is equivalent to the system of equa-
tions (23) since Legendre’s polynomials from a complete system in the in-
terval [-1;1].
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Remark. We believe that all vector functions or tensor fields in rela-
tions (23)-(25) for each point (x1, x2) ∈ ω have expansion in series to the

coordinate x3 on Legendre’s polynomials Pk

(
x3

h

)
.

Now we have to obtain the expressions for the so-called moments of

order k
(k)

T⃗ from the relations (24). We will literally repeat verbatim the
algorithm of a reduction of Vekua for a reduction of linear part (20), and
we will use T. Meunargia’s works [17-19] for nonlinear part. In these works
the method of Vekua was generalized for both nonlinear geometrically and
physically non-shallow shell.

Thus, for obtaining the two-dimensional relations corresponding to the
generalized Hooke’s law, I. Vekua makes the assumption of geometrical char-
acter which is called the first main assumption and it is as follows

1− k1x
3 ∼= 1, 1− k2x

3 ∼= 1, −h ≤ x3 ≤ h. (29)

These requirements mean that either the main curvatures k1 and k2 of
a middle surface are small (shallow shell), or the thickness of the shell is
small (thin shell). It follows from the assumptions (29) that the spatial
covariant and contravariant basis vectors are approximately equal to the
corresponding basis vectors of a middle surface. Therefore, corresponding
covariant and contravariant components and discriminants of metric tensors
of space and a middle surface are also approximately equal

R⃗α
∼= r⃗α, R⃗α ∼= r⃗ α, R⃗3 = r⃗3 = n⃗, gαβ ∼= aαβ, g

αβ ∼= aαβ, g ∼= a. (30)

According to an assumption (29) we will have

(k)

T⃗ j =
(
k +

1

2

)1
h

h∫
−h

T⃗ jPk

(x3

h

)
dx3; (31)

Let’s assume that U⃗ = (u⃗′, u⃗′′)Tare sufficiently smooth functions and they
are placed as a uniformly convergent series at Legendre’s polynomials for
each fixed point (x1, x2) of surface of ω with respect to the argument x3

U⃗(x1, x2, x3) =
∞∑
k=0

(k)

U⃗ (x1, x2)Pk

(x3

h

)
,

where

(k)

U⃗ (x1, x2) =
(
k +

1

2

)1
h

h∫
−h

U⃗(x1, x2, x3)Pk

(x3

h

)
dx3.
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Substituting expressions (24) in to formula (31), taking into account as-
sumptions (30), we have

(k)

T⃗ a ∼= Λ(r⃗ γDγ

(k)

U⃗ )r⃗ α + (M + λ5S)(r⃗
αDγ

(k)

U⃗ )r⃗ γ + (M − λ5S)(r⃗
αr⃗ γ)Dγ

(k)

U⃗

+Λ(n⃗D3

(k)

U⃗ )r⃗ a + (M + λ5S)(r⃗
αD3

(k)

U⃗ )n⃗+
(k)

N⃗α. (32)

(k)

T⃗ 3 ∼= Λ(r⃗ γDγ

(k)

U⃗ )n⃗+ (M + λ5S)(n⃗Dγ

(k)

U⃗ )r⃗ γ + (M − λ5S)D3

(k)

U⃗

+(Λ +M + λ5S)(n⃗D3

(k)

U⃗ )n⃗+
(k)

N⃗3, (33)

where

Dj

(k)

U⃗ :=
(
k +

1

2

)1
h

h∫
−h

∂jU⃗Pk

(x3

h

)
dx3;

(k)

N⃗ j =
(
k +

1

2

)1
h

h∫
−h

(k)

N⃗ jPk

(x3

h

)
dx3.

The following formula is fair [16]

Dj

(k)

U⃗ =


∂α

(k)

U⃗ − ∂α lnh
(k ′′)

U⃗ , j = α,

1

h

(k ′)

U⃗ , j = 3,

where

(k′)

U⃗ := (2k+1)
((k+1)

U⃗ +
(k+3)

U⃗ +. . .
)
,

(k′′)

U⃗ := k
(k)

U⃗ +(2k+1)
((k+2)

U⃗ +
(k+4)

U⃗ +. . .
)
.

We obtain the following expression for nonlinear values
(k′)

N⃗

(k)

N⃗ i ∼=
∞∑

m=0

∞∑
n=0

min(m,n)∑
r1=0

αmnr1

{[
1

2
Λ
(
Dj

(m)

U⃗ ◦Dj
(n)

U⃗
)
r⃗ i +M

(
Di

(m)

U⃗ ◦Dj

(n)

U⃗
)
r⃗ j

−λ5S
(
Di

(m)

U⃗ ◦(EDj

(n)

U⃗ )
)
r⃗ j+

(
Λ
(
r⃗ jDj

(m)

U⃗
))

◦Di
(n)

U⃗ +
(
(M+λ5S)(r⃗

iDj

(m)

U⃗ )
)

◦Dj
(n)

U⃗
(
(M − λ5S)(D

i
(m)

U⃗ r⃗ j)
)
◦Dj

(n)

U⃗

]
δm+n−2r1
k +

∞∑
l=0

min(l,k)∑
r2=0

αlkr2[
1

2

(
Λ
(
Dj

(m)

U⃗ ◦Dj
(n)

U⃗
)
◦Di

(l)

U⃗ +
(
M(Di

(m)

U⃗ ◦Dj

(n)

U⃗ ) ◦Dj
(l)

U⃗
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−λ5

(
S
(
Di

(m)

U⃗ ◦ (EDj

(n)

U⃗
)))

◦Dj
(l)

U⃗

]
(2k + 1)δl+k−2r2

m+n−2r1

2(l + k − 2r2) + 1

}
, (34)

where

amnr =
Am−rArAn−r

Am+n−r

2(m+ n)− 4r + 1

2(m+ n)− 2r + 1
, Am =

(2m− 1)!!

m!
;

D3 = D3, Dα = aαγDγ, r⃗ 3 = r⃗3 = n⃗.

If we consider contravariant components of a vector of
(k)

T⃗ i in covariant ba-

sis
(k)

T⃗ i =
(k)

T iαr⃗α +
(k)

Tα3n⃗,
(k)

T ij =
( (k)

T
′ij,

(k)

T
′′ij
)T

and use formulas of Gauss

and Weingarten the system of equilibrium equations may be rerecorded as
follows


∇α

(k)

Tαβ − bβα

(k)

Tα3 + ∂α lnh
(k)

Tαβ

=
− 1

h

(k)

T 3β

−
+

(k)

F β = 0,

∇α

(k)

Tα3 + bαβ

(k)

Tαβ + ∂α lnh
(k)

Tα3

=
− 1

h

(k)

T 33

−
+

(k)

F 3 = 0, k = 0, 1, . . . ,

(35)

where ∇α is a covariant derivative on the midsurface ω; bαβ, b
β
α are respec-

tively, the covariant and mixed components of the tensor of curvature of the
midsurface ω;

(k)

T 3j
− = (2k + 1)

(
(k−1)

T 3j +
(k−3)

T 3j + . . .

)
,

(k)

Tαj

=
= (k + 1)

(k)

Tαj + (2k + 1)

(
(k−2)

Tαj +
(k−4)

Tαj + . . .

)
,

(−n)

T ij = 0,

when n > 0;
(k)

F⃗ =
(k)

F αr⃗α +
(k)

F 3n⃗.
We obtain the following relations from the formulas (32) and (33) for

the moments of covariant a components of the first tensor of stress of Piola-

Kirchhoff
(k)

Tij = aimajn
(k)

Tmn

(k)

Tαβ = Λ
(k)

emmaαβ + 2M
(k)
eαβ − 2λ5

(k)

hαβ +
(k)

Nαβ,

(k)

Tα3 = 2M
(k)
eα3 − 2λ5

(k)

hα3 +
(k)

Nα3,

(k)

T3α = 2M
(k)
eα3 + 2λ5

(k)

hα3 +
(k)

N3α,

(k)

T33 = Λ
(k)

emmaαβ + 2M
(k)
e33 +

(k)

N33,

(36)
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where
(k)
eij,

(k)

hij are the moments of the linearized components of tensors of

deformation and rotation , respectively;
(k)

emm = amj
(k)
emj;

(k)

Nij = aimain

(k)

N⃗mr⃗j.

The following formulas (
(k)

Uj =
(k)

U⃗ r⃗j,
(k)

U j =
(k)

U⃗ r⃗j = ajm
(k)

Um) are fair for the

values
(k)
eij,

(k)

hij and
(k)

emm

(k)
eαβ =

1

2
(∇α

(k)

Uβ +∇β

(k)

Uα − 2bαβ
(k)

U3 −
(k′′)

Uα∂β lnh−
(k′′)

Uβ ∂α lnh),

(k)
eα3 =

1

2
(∇α

(k)

U3 + bαβ

(k)

Uβ +
1

h

(k′)

Uα −
(k′′)

U3 ∂α lnh),

(k)
eα3 =

1

2

(k′)

U3 ,

(k)

hαβ =
1

2
S(∇α

(k)

Uβ −∇β

(k)

Uα −
(k′′)

Uβ ∂α lnh+
(k′′)

Uα∂β lnh),

(k)

hα3 =
1

2
S(∇α

(k)

U3 + bαβ

(k)

Uβ − 1

h

(k′)

Uα −
(k′′)

U3 ∂α lnh),
(k)

h3α = −
(k)

hα3,

(k)

emm = ∇α

(k)

Uα − 2H
(k)

U3 −
(k′′)

Uα∂α lnh+
1

h

(k′)

U3 ,

(37)

where
(k′)

Uj = (2k + 1)
∞∑

m=0

(k+2m+1)

Uj ,
(k′′)

Uj = k
(k)

Uj + (2k + 1)
∞∑

m=1

(k+2m)

Uj ; H =

1
2
(k1 + k2) =

1
2
bαα are the mean curvatures of the surface ω.

We have the following formula for the moments of contravariant compo-

nents of a nonlinear tensor
(k)

N ij =
(k)

N⃗ ir⃗j

(k)

N ij =
∞∑

m=0

∞∑
n=0

min(m,n)∑
r1=0

αmnr1

{[
1

2
Λ
( ∗
∇q

(m)

Up ◦
∗
∇q

(n)

Up
)
aαβ +M

( ∗
∇i

(m)

Up ◦
∗
∇j

(n)

Up

)

−λ5S
( ∗
∇i

(m)

Up ◦
(
E

∗
∇j

(n)

Up

))
+
(
Λ

∗
∇q

(m)

U q) ◦
∗
∇i

(n)

U j + ((M + λ5S)
∗
∇q

(m)

U i) ◦
∗
∇q

(n)

U j

+((M − λ5S)
∗
∇i

(m)

Up) ◦
∗
∇p

(n)

U j

]
δm+n−2r1
k +

∞∑
l=0

min(l,k)∑
r2=0

alkr2

[
1

2

(
Λ
( ∗
∇q

(m)

Up

◦
∗
∇q

(n)

Up
)
◦

∗
∇i

(l)

U j +
(
M

∗
∇i

(m)

Up ◦
∗
∇q

(n)

Up
)
◦

∗
∇q

(l)

U j − λ5(S(
(∗)
∇i

(m)

Up

◦(E
∗
∇q

(n)

Up))
∗
∇q

(l)

U j

]
(2k + 1)δl+k−2r2

m+n−2r1

2(l + k − 2r2) + 1

}
,

where the following notation is introduced
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∗
∇i

(k)

Uj :=
(
k +

1

2

)1
h

h∫
−h

◦
∇iUjPk

(x3

h

)
dx3.

The operator
◦
∇i implies its approximate value when the following rela-

tions are fair

∗
∇α

(k)

Uβ = ∇α

(k)

Uβ − bαβ
(k)

U3 − ∂α lnh
(k′′)

Uβ ,

∗
∇α

(k)

U3 = ∂α
(k)

U3 + bβα
(k)

Uβ − ∂α lnh
(k′′)

U3 ,

∗
∇3

(k)

Uα =
1

h

(k′)

Uα + bβα
(k)

Uβ,

∗
∇3

(k)

U3 =
1

h

(k′)

U3 .

Substituting formulas (37) into relations (32) and introducing the ob-
tained expressions into the system of the equations (35), we will receive the
following two-dimensional system of equations concerning the moments of
the displacement vector


(M − λ5S)∇α(∇α

(k)

Uβ) + (M + λ5S)∇α(∇β
(k)

Uα)

+Λ∇β(∇α

(k)

Uα) +
(k)

Mβ +
(k)

Mβ
NL +

(k)

F β = 0,

(M − λ5S)∇α(∇α
(k)

U3) +
(k)

M3 +
(k)

M3
NL +

(k)

F3 = 0, k = 1, . . . ,

(38)

where
(k)

M j = (
(k)

M
′j,

(k)

M
′′j)T are homogeneous linear differential expressions

containing the functions
(k)

u′
i and

(k)

u′′
i and the first order derivatives with

variables x1, x2;

(k)

Mβ
NL = ∇α

(k)

Nαβ − bβα

(k)

Nα3 + ∂α lnh
(k)

Nαβ

=
− 1

h

(k)

N3β

−
,

(k)

M3
NL = ∇α

(k)

Nα3 + bαβ

(k)

Nαβ + ∂α lnh
(k)

Nα3

=
− 1

h

(k)

N33

−
,

(k)

N3j

−
= (2k + 1)

(
(k−1)

N3j +
(k−3)

N3j + . . .

)
,

(k)

Nαj

=
= (k + 1)

(k)

Nαj + (2k + 1)

(
(k−2)

Nαj +
(k−4)

Nαj + . . .

)
.
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Using the same method of reduction we will obtain boundary conditions
from the boundary conditions (26), (27) for the moments of displacements
and stresses on the boundary of a middle surface

I.
(k)

U⃗ (x1, x2) =
(k)

U⃗0, (x1, x2) ∈ ∂ω

II.
(k)

T⃗(l)(x
1, x2) =

(k)

T⃗ 0
(l), (x1, x2) ∈ ∂ω, k = 0, 1, . . . ,

where l⃗ is a tangential normal to the lateral boundary surface of the shell(
(k)

U⃗0,
(k)

T⃗ 0
(l)

)
=

(
k +

1

2

)
1

h

h∫
−h

(U⃗0, T⃗ 0
(l))Pk

(
x3

h

)
dx3.

The obtained system of the equations (38) contains an infinite number
of equations and an infinite number of unknown functions. To pass to the
finite system Vekua makes an assumption which he calls the second main
assumption. The second main assumption is that the vector of displacement
is taken equal to the polynomial of finite order with respect to the coordinate
x3

U⃗(x1, x2, x3) =
N∑
k=0

(k)

U⃗ (x1, x2)Pk

(x3

h

)
,

where N is some fixed non-negative integer number.
Thus, we have in all expressions obtained above that

(k)

U⃗ = 0, when k > N, i.e.
(k)

Uj =
(k)

U j = 0, when k > N.

Besides we keep the first 6N + 6 of the equation in the system of the
equations (38). Thus we obtain the system of the 6N + 6 equations with
partial derivatives for of 6N + 6 unknown functions from two independent
variables

(M − λ5S)∇α(∇α
(k)

Uβ) + (M + λ5S)∇α(∇β
(k)

Uα) + Λ∇β(∇α

(k)

Uα)

+
(k)

Mβ +
(k)

Mβ
NL +

(k)

F β = 0,

(M − λ5S)∇α(∇α
(k)

U3) +
(k)

M3 +
(k)

M3
NL +

(k)

F3 = 0, k = 0, 1, . . . , N.

(39)

The system of equations (39) is recorded in any curvilinear system of coor-
dinates on a middle surface of a shell.

4. Conclusion

In the paper we consider a geometrically nonlinear model of binary mix-
ture of two isotropic materials. The main two-dimensional relations for
the shallow shells consisting of binary mixture are obtained from the main
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three-dimensional equations of the considered model. The further inter-
est is to use the method of Vekua-Meunargia for obtaining the equations
for non-shallow shells having similar internal structure. And, of course,
the great interest is also the consideration of concrete approximations for
specific boundary value problems.
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