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AN APPOXIMATE METHOD FOR THE PLATE UNDER
SYMMETRIC LOAD
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Abstract. A boundary value problem is considered for a nonlinear system of

ordinary differential equations which, according to the Timoshenko theory, de-

scribes the static behavior of a symmetric plate. Using Green’s function, the

problem is reduced to one equation with respect to a transverse bending function

w, while other unknown functions of the initial problem are expressed by means

of the function w. The problem for w is solved by the Galerkin method. The

Jacobi method is applied to the resulting system of discrete equations and the

accuracy of this method is estimated.
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1. Introduction

The nonlinear system of Timoshenko plate equations is important from
the theoretical and applied viewpoints. It is used when the hypothesis that
the normal is perpendicular to the midsurface after deformation fails to be
fulfilled. The questions concerning the solvability of corresponding system
and the justification of appropriate numerical methods for it were open
[11]. Note that using the condensing operator theory [1], the existence of a
solution of the Timoshenko static problem is shown for small loads only [7].

Here we consider a one-dimensional problem of elliptic type for the static
Timoshenko plate.

2. Statement of the problem

Let us consider the nonlinear system of ordinary differential equations

u′′ +
1

2

(
w′2)′ + p(x) = 0,

k20
Eh0

2(1 + ν)
(w′′ + ψ′) +

Eh0
1− ν2

[(
u′ +

1

2
w′2
)
w′
]′
+ q(x) = 0, (1)

h20
6(1− ν)

ψ′′ − k20 (w
′ + ψ) + r(x) = 0,

0 < x < 1,

with the boundary conditions

u(0) = u(1) = 0, w(0) = w(1) = 0, ψ′(0) = ψ′(1) = 0. (2)
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Here the displacements u = u(x), w = w(x) of the plate midplane and the
angle of rotation ψ = ψ(x) of the normal to the midplane are the unknown
functions to be determined, whereas the forces p(x), q(x) and r(x) are the
given ones. E is Young’s modulus, h0 is the plate thickness, k0 is the lateral
shear coefficient and ν is the Poisson ratio, 0 < ν < 0.5.

Equations (1) characterize the plate equilibrium under the action of an
axially symmetric load. They are obtained from Timoshenko system for
a shell [10, p. 42]. For this, we drop the variables y and t and assume
kx = ky = 0. However we preserve the cubic nonlinear terms. Note that
system (1) can also be obtained from Timoshenko system for a plate in [3,
p. 24].

3. Reduction of the system

Using the first and the third equation from (1) and taking into account
the respective boundary conditions from (2), the functions u(x) and ψ(x)
can be expressed through the function w(x) as follows

u(x) = (x− 1)

∫ x

0

(
1

2
w′2(ξ)− ξp(ξ)

)
dξ

+ x

∫ 1

x

(
1

2
w′2(ξ)− (ξ − 1)p(ξ)

)
dξ,

ψ(x) = − σ

sinhσ

(
coshσ(x− 1)

∫ x

0

coshσξ

(
w′(ξ)− 1

k20
r(ξ)

)
dξ

+ cosh σx

∫ 1

x

coshσ(ξ − 1)

(
w′(ξ)− 1

k20
r(ξ)

)
dξ

)
,

(3)

where σ = k0
h0

√
6(1− ν) . Applying (3) in the second equation of system

(1), we obtain the integro-differential equation with respect to w(x)

Eh0
1−ν2

[(
1−ν
2

k20+
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2

∫ 1

0

w′2dx+

∫ 1

0

(1− x)p(x) dx−
∫ x

0

p(ξ) dξ

)
w′′−p(x)w′

]
− 3Ek40
h0 sinhσ

1− ν

1 + ν

(
sinhσ(x− 1)

∫ x

0

coshσξ

(
w′(ξ)− 1

k20
r(ξ)

)
dξ

+ sinhσx

∫ 1

x

coshσ(ξ − 1)

(
w′(ξ)− 1

k20
r(ξ)

)
dξ

)
+ q(x) = 0, (4)

which we complement with the corresponding boundary condition from (2)

w(0) = w(1) = 0. (5)

After solving problem (4),(5), we substitute w(x) in (3) and find other
unknown functions u(x) and ψ(x).

4. Algorithm

Let us consider the numerical algorithm of the solution of problem (4),
(5), which in the particular cases was used in [8] [9]. The approximation of
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w(x) with respect to the spatial variable is written as the finite sum

wn(x) =
n∑

i=1

1

iπ
wni sin iπx, (6)

where, in case we apply the Galerkin method [5], the coefficients wni satisfy
the nonlinear system of equations(
p1i+p2+

n∑
j=1

w2
nj

)
wni+

n∑
j=1

p3ijwnj+
1

i
(qi+ri) = 0, i = 1, 2, . . . , n. (7)

Here the following notation is used

p1i =
1

1
2k20(1−ν)

+ 3
(h0πi)2

, p2 = 4

∫ 1

0

(1− x)p(x) dx,

p3ij = 8

(
− j

i

∫ 1

0

(∫ x

0

p(ξ) dξ

)
sin iπx sin jπx dx

+
1

iπ

∫ 1

0

p(x) sin iπx cos jπx dx

)
,

qi = −8(1− ν2)

Eh0π

∫ 1

0

q(x) sin iπx dx,

ri = −24k20(1− ν)2

h20π sinhσ

∫ 1

0

(
sinhσ(x− 1)

∫ x

0

r(ξ) cosh σξ dξ

+ sinhσx

∫ 1

x

r(ξ) cosh σ(ξ − 1) dξ

)
sin iπx dx.

(8)

Using the integration by parts formula we find

p3ij = −8

∫ 1

0

(∫ x

0

p(ξ) dξ

)
cos iπx cos jπx dx,

ri =
24k20(1− ν)2i

h20(σ
2 + (iπ)2)

∫ 1

0

r(x) cos iπx dx.

(9)

We will solve system (7) by using the iteration method(
p1i + p2 + w2

ni,k+1 +
n∑

j=1
j ̸=i

w2
nj,k

)
wni,k+1 + p3iiwni,k+1

+
n∑

j=1
j ̸=i

p3ijwnj,k +
1

i
(qi + ri) = 0, k = 0, 1, . . . , i = 1, 2, . . . , n, (10)

where wni,k+l is the (k + l)-th approximation of wni, l = 0, 1. This method
is nothing else but the Jacobi nonlinear iteration process [6]. After defining
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wni,k, i = 1, 2, . . . , n, we use them in formula (6) instead of wni and, as a
result, find the approximation of the function w(x), which, when used in
(3), gives the approximation for the functions u(x) and ψ(x).

Note that each i-th equation of system (10) is a cubic equation for
wni,k+1. Therefore, using the Cardano formula [2], wni,k+1 can be written in
the explicit form

wni,k+1 = σi,1 − σi,2, k = 0, 1, . . . , i = 1, 2, . . . , n, (11)

where

σi,l =

[
(−1)l

si
2
+

(
s2i
4
+
t3i
27

) 1
2

] 1
3

, l = 1, 2, (12)

ti = p1i + p2 + p3ii +
n∑

j = 1
j ̸= i

w2
nj,k, si =

1

i
(qi + ri) +

n∑
j = 1
j ̸= i

p3ijwnj,k . (13)

5. Jacobi iteration error

Under the error of iteration method (11) we understand a difference
between the function wn(x) (see (6)) and the function

wn,k(x) =
n∑

i=1

1

iπ
wni,k sin iπx

obtained during the realization of the process (11), i.e. the function

wn(x)− wn,k(x) =
n∑

i=1

1

iπ
(wni − wni,k) sin iπx. (14)

Having denoted
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(∫ 1

0

p2(x) dx

) 1
2
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(∫ 1

0

q2(x) dx

) 1
2

, r0 =

(∫ 1

0

r2(x) dx

) 1
2

we introduce into consideration the restrictions

c =

(
1

k20(1− ν)
+

6

(h0π)2

)−1

− 5√
3
p0 > 0 (15)

and
√
2

c

[
p0(n

2 − 1) +
4√
c

(
q0

1− ν2

Eh0π

n∑
i=1

1

i

+3r0
k20(1− ν)2

h20

n∑
i=1

1

σ2 + (iπ)2

)]
< ∆ < 1. (16)
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Let us prove the convergence of process (11). We write system (11) in
the form

wni,k+1 = φi (wn1,k, wn2,k, . . . , wnn,k) (17)

and consider the Jacobi matrix

J =

(
∂φi

∂wnj,k

)n

i,j=1

. (18)

By virtue of (11)–(13) and (17) we conclude that the diagonal elements of
the matrix J are equal to zero. As to the nondiagonal elements, i ̸= j, we
have for them

∂φi

∂wnj,k

=−1

6

2∑
l=1

1

σ2
i,l

[
p3ij+(−1)l

(
s2i
4
+
t3i
27

)− 1
2
(
si
2
p3ij+

2

9
t2iwnj,k

)]
. (19)

By (12)

σi,1 · σi,2 =
ti
3
, σ3

i,2 − σ3
i,1 = si,

(
s2i
4
+
t3i
27

) 1
2

=
σ3
i,1 + σ3

i,2

2
. (20)

Using these relations in (19), we get

∂φi

∂wnj,k

= −1

6
p3ij

1

σ2
i,1 − ti

3
+ σ2

i,2

+
2

3
wnj,k si

1

σ4
i,1 + ( ti

3
)2 + σ4

i,2

. (21)

Taking into account the first equality of (20), we find that

σ2
i,1 −

ti
3
+ σ2

i,2 ≥
1

3
ti, σ4

i,1 + σ4
i,2 ≥

2

9
t2i . (22)

By (21) and (22) we write∣∣∣∣ ∂φi

∂wnj,k

∣∣∣∣ ≤ ϕ1ij + ϕ2ij , (23)

where

ϕ1ij =
1

2
|p3ij|

1

|ti|
, ϕ2ij = 2|wnj,k| |si|

1

t2i
. (24)

Let us estimate each ϕlij, l = 1, 2. Suppose that the initial data of the
problem – the function p(x) and the constants ν, E, h and k0 – are such
that

p1i > |p2 + p3ii| . (25)

As follows from (8), (9) and (25) implies the fulfillment of the relation(
1

2k20(1− ν)
+

3

(h0iπ)2

)−1

>

∣∣∣∣4 ∫ 1

0

(1− x)p(x) dx

−8

∫ 1

0

(∫ x

0

p(ξ) dξ

)
cos2 iπx dx

∣∣∣∣, i = 1, 2, . . . , n. (26)
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In that case, by virtue of (24) and (13) we have

ϕ1ij ≤
1

2ci
|p3ij| , (27)

where ci = p1i − |p2 + p3ii| . Further, using (24), (25), (13) and the fact that
max

x

x
c+x2 = 1

2
√
c
, x > 0, c > 0, we come to a conclusion that

ϕ2ij = 2
|wnj,k|
|ri|

|si|
ri|

≤ 2
|wnj,k|

ci + w2
nj,k

(
1

i

|qi|+ |ri|
ci

+
1

ci +
n∑

l=1
l ̸=i

w2
nl,k

(
n∑

l=1
l ̸=i

p23il

) 1
2

×

(
n∑

l=1
l ̸=i

w2
nl,k

) 1
2
)

≤ 1
√
ci

(
1

i

|qi|+ |ri|
ci

+
1

2
√
ci

(
n∑

l=1
l ̸=i

p23il

) 1
2
)
. (28)

Let us introduce the vector and matrix norms by means of the expres-

sions
n∑

i=1

|vi| and max
1≤j≤n

n∑
i=1

|mij| for v = (vi)
n
i=1 and M = (mij)

n
i,j=1.

Assume that the norm of the matrix J is smaller than a number ∆,
0 < ∆ < 1. According to (18), (23), (27) and (28) this requirement takes
place if

1

2
max
1≤j≤n

n∑
i=1
i ̸=j

1

ci
|p3ij|

+
1

2

n∑
i=1

1

ci

(
2
|qi|+ |ri|
i
√
ci

+

(
n∑

j=1
j ̸=i

p23ij

) 1
2
)
< ∆ < 1. (29)

Then, by virtue of Banach’s contraction principle [4] there exists a unique
solution wni, i = 1, 2, . . . , n, of system (7) to which the sequence of approx-
imations wni,k of the iteration method converges as k → ∞, whereas the
error decreases with a geometrical progression rate

n∑
i=1

|wni − wni,k| ≤
∆k

1−∆

n∑
i=1

|wni,1 − wni,0|, k = 0, 1, . . . . (30)

Now we replace conditions (26) and (29) by more rigid but easily ver-
ifiable conditions. For this, we require the fulfillment of p1i > |p2| + |p3ii|
instead of (25), then apply (8), (9) and the following relations obtained by
means of the Cauchy–Bunyakowski inequality∣∣∣∣ ∫ 1

0

(1− x)p(x) dx

∣∣∣∣ ≤ 1√
3
p0,
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∣∣∣∣ ∫ 1

0

(∫ x

0

p(ξ) dξ

)
cos iπx cos jπx dx

∣∣∣∣ ≤ 1

2
√
2
p0, i ̸= j,∣∣∣∣ ∫ 1

0

(∫ x

0

p(ξ) dξ

)
cos2 iπx dx

∣∣∣∣ ≤ √
3

4
p0,∣∣∣∣ ∫ 1

0

q(x) sin iπx dx

∣∣∣∣ ≤ 1√
2
q0 ,

∣∣∣∣ ∫ 1

0

r(x) cos iπx dx

∣∣∣∣ ≤ 1√
2
r0 .

As a result, instead of requirement (26) we will have (15) and (29) will be
replaced by the condition (16). It is not difficult to verify that conditions
(26) and (29) as well as (15) and (16) are fulfilled for sufficiently small
functions p(x), q(x) and r(x).

Using (30), we come to the conclusion that when conditions (26) and
(29) as well as (15) and (16) are fulfilled, for the L2(0, 1)-norm of error (14)
we have∥∥∥∥ dldxl (wn(x)− wn,k(x))

∥∥∥∥
L2(0,1)

≤ ∆k

√
2 π1−l(1−∆)

n∑
i=1

|wni,1 − wni,0|,

l = 0, 1, k = 0, 1, . . . .
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