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NEWTONIAN VOLUME POTENTIAL FOR THE HELMHOLTZ
EQUATION IN UNBOUNDED DOMAINS

Manelidze G.

Abstract. We study properties of Newtonian volume potential for the Helmholtz

operator in unbounded three-dimensional domains and establish that if the den-

sity function decays at infinity as O(|x|−m) with m > 4 for sufficiently large

|x|, then the volume potential satisfies the Sommerfeld radiation conditions at

infinity.
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Introduction

In the wave scattering theory there often arise problems when the un-
known function u satisfies the nonhomogeneous Helmholtz equation in an
unbounded domain:

∆u(x) + ω2u(x) = Φ(x), x ∈ Ω−, (1)

where ∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

is the Laplace operator, Ω− is a three-

dimensional unbounded complement of a bounded domain Ω+ ⊂ R3 with
the simply connected smooth boundary S: Ω− = R3 \ Ω+, Ω+ = Ω+ ∪ S,
Ω− = Ω−∪S, ω ∈ R is the so called frequency parameter, and Φ is a known
function with noncompact support. Without loss of generality, through-
out the paper we assume that Φ is defined in the whole space R3. The
smoothness and asymptotic properties of Φ will be specified below.

In the exterior boundary value problems along with the differential equa-
tion (1) the unknown function satisfies one of the following boundary con-
ditions:

the Dirichlet condition:

{u(x)}− = fD(x) on S, (2)

the Neumann condition:

{∂nu(x)}− = fN(x) on S, (3)

the Robin condition:

{∂nu(x) + α(x)u(x)}− = fR(x) on S, (4)
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or the mixed boundary condition when the surface S is divided into three
disjoint sub-manifolds, S = SD ∪ SN ∪ SR and on each part there are
prescribed the corresponding Dirichlet, Neumann, or Robin type boundary
conditions [9], [3], [5].

Moreover, the solution has to satisfy the Sommerfeld radiation condi-
tions at infinity ([12], [11], [1], [2]).

u(x) = O(r−1) (5)

∂u(x)

∂r
− i ω u(x) = o(r−1), r = |x| =

√
x2
1 + x2

2 + x2
3. (6)

To investigate the above formulated boundary value problems for the non-
homogeneous Helmholtz equation (1) by reduction to the homogeneous
Helmholtz equation one needs to find a particular solution satisfying the
Sommerfeld radiation conditions at infinity. For arbitrary smooth func-
tion Φ, satisfying some decay conditions at infinity, a particular solution to
equation (1) can be represented by the Newtonian volume potential [7], [8],
[10],

NΩ−(Φ)(y) := − 1

4π

∫
Ω−

ei ω |x−y|

|x− y|
Φ(x) dx, y ∈ Ω−, (7)

where

Γ(x− y, ω) := − 1

4π

ei ω |x−y|

|x− y|
(8)

is the fundamental solution of the Helmholtz operator, i.e., (∆ + ω2) Γ(x−
y, ω) = δ(x− y) with δ(·) being the Dirac distribution.

Our main goal in this paper is to show that the Newtonian potential (7)
under some conditions for the density function Φ satisfies the Sommerfeld
radiation conditions. In particular, the following assertion holds.

Theorem 1. Let Φ be a continuous function in R3, Φ ∈ C(R3), and
satisfy the following estimate

|Φ(x)| 6 A

(1 + |x|)m
, x ∈ R3, (9)

with m > 4 and a positive constant A.
Then the Newtonian volume potential associated with the Helmholtz op-

erator ∆+ ω2,

N(Φ)(y) ≡ NR3(Φ)(y) = − 1

4π

∫
R3

ei ω |x−y|

|x− y|
Φ(x) dx, y ∈ R3, (10)

satisfies the Sommerfeld radiation conditions, i.e., for sufficiently large |y|

N(Φ)(y) = O(|y|−1), (11)

∂N(Φ)(y)

∂|y|
− i ω N(Φ)(y) = O(|y|−2). (12)
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(
∂

∂ |y|
≡ yk

|y|
∂

∂yk

)
Proof. First we prove the relation (12). To this end, recall that

∂

∂|y|
≡ yk

|y|
∂

∂yk
, (13)

where summation over repeated entices is meant from 1 to 3, and denote

K(x, y) :=

(
∂

∂|y|
− i ω

)
ei ω |x−y|

|x− y|
=

(
yk
|y|

∂

∂yk
− i ω

)
ei ω|x−y|

|x− y|
(14)

=

[
− yk
|y|

yk − xk

|x− y|3
+ i ω

yk
|y|

yk − xk

|x− y|2
− i ω

|x− y|

]
ei ω |x−y| (15)

=

[
(x · y)− |y|2

|y||x− y|3
− i ω (x · y)

|y||x− y|2
+ i ω

(
|y|

|x− y|2
− 1

|x− y|

)]
ei ω |x−y|

=

[
(x · y)− |y|2

|y||x− y|3
− i ω (x · y)

|y||x− y|2
+

i ω
(
2(x · y)− |x|2

)
|x− y|2(|y|+ |x− y|)

]
ei ω |x−y| .

(16)

By simple calculations we derive

∂N(Φ)(y)

∂|y|
− i ω N(Φ)(y) = − 1

4π

∫
R3

K(x, y)Φ(x) dx = − 1

4π

4∑
j=1

Ij(y),

(17)

where

Ij(y) = − 1

4π

∫
Ωj

K(x, y)Φ(x)dx, y ∈ R3, (18)

Ω1 = B

(
y,

R

2

)
, Ω2 = B(0, R) \

{
B

(
0,

R

2

)
∪B

(
y,

R

2

)}
(19)

Ω3 = R3 \ {B(0, R) ∪ Ω1}, Ω4 = B

(
0,

R

2

)
, R = |y|, . (20)

We assume that |y| = R is sufficiently large. Let us estimate the integrals
with respect to |y| = R.

Introducing the spherical co-ordinates at the point y,

x1 = y1 + ρ cosφ sin θ, x2 = y2 + ρ sinφ sin θ, x3 = y3 + ρ cos θ,
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and taking into account the relations (9), (15) and (18), we get

|I1(y)| 6 C1

∫
Ω1

[
1

|x− y|2
+

1

|x− y|

]
|Φ(x)| dx

6 C1 sup
Ω1

|Φ(x)|
∫
B(y,R2 )

[
1

|x− y|2
+

1

|x− y|

]
dx

6 C1 sup
Ω1

|Φ(x)|
∫ R

2

0

∫ 2π

0

∫ π

0

[
1

ρ2
+

1

ρ

]
ρ2 sin θ dθ dφ dρ 6 C2R

2

(1 +R)m
.

Here we employed the fact that if x ∈ Ω1, then |x| ≥ R
2
.

Thus, there is a positive constant C such that

|I1(y)| 6 C R2−m = C |y|2−m (21)

for sufficiently large |y|, |y| = R ≫ 1.
Quite similarly, using the fact that the inclusion x ∈ Ω2 implies the inequal-
ities |x− y| > R

2
and R

2
6 |x| 6 R, we get

|I2(y)| 6 C1

∫
Ω2

[
1

|x− y|2
+

1

|x− y|

]
|Φ(x)| dx

6 C2

R
sup

R
2
6|x|6R

|Φ(x)|
∫
Ω2

dx 6 C3R
2

(1 +R)m
,

i.e.

|I2(y)| 6 C R2−m = C |y|2−m (22)

Analogously, since the inclusion x ∈ Ω3 implies |x − y| > R
2
and |x| > R,

we have the following estimate

|I3(y)| 6 C1

∫
Ω3

[
1

|x− y|2
+

1

|x− y|

]
|Φ(x)| dx

6 C2

R

∫
|x|>R

|Φ(x)| dx 6 C3

R

∫ +∞

R

ρ2dρ

ρm
6 C3

m− 3
R2−m,

i.e.

|I3(y)| 6 C R2−m = C |y|2−m (23)

with some positive constant C.

Finally, we use that |x − y| > R
2
for x ∈ Ω4 and estimate the integral
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I4 (y) with the help of the representation (16)

|I4(y)| 6
∫
Ω4

|K(x, y)| |Φ(x)| dx

6 C1

∫
|x|≤R

2

(
|x|
R3

+
1

R2
+

|x|
R2

+
|x|
R2

+
|x|2

R3

)
|Φ(x)| dx

6 C2

R2

∫
|x|6R

2

(1 + |x|) |Φ(x)| dx 6 C2

R2

∫
R3
(1 + |x|) |Φ(x)| dx

6 C3

R2

∫
R3

dx

(1 + |x|)m−1

Now, since m > 4 we deduce

|I4(y)| 6 C R−2 = C |y|−2 (24)

with a positive constant C.
From inequalities (22)-(24) the relation (12) follows.
The proof of inequality (11) is word for word. �

Corollary 2. Let the conditions of Theorem 1 be satisfied and, in
addition, let Φ be a locally Hölder continuous function in Ω−, Φ ∈ C 0,α(Ω−),
i.e., there are positive constants B and 0 < α 6 1, such that

|Φ(x)− Φ(y)| 6 B|x− y|α, x, y ∈ Ω−, |x− y| 6 1.

Then the Newtonian volume potential defined by (10) has a Holder con-
tinuous second order derivatives in Ω−, N(Φ) ∈ C 0,α(Ω−), and represents
a classical radiating solution of the non-homogeneous Helmholtz equation
(1).

Proof. It should be mentioned that the second order partial derivatives
of the Newtonian potential (1) are represented by singular integrals and the
assertion immediately follows form Theorem 1 and the properties of volume
potentials with Hölder continuous densities and with bounded integration
domains (see e.g. [4], [9], [6]).

Remark 3. If one looks for a radiating solution u of the above formu-
lated boundary value problems for the nonhomogeneous equation (1) in the
form

u(x) = v(x) +N(Φ)(x), (25)

where v is a new unknown radiating function, then it is evident that, due
to Theorem 1 and Corollary 2 the problems are reduced to the similar
boundary value problems for the homogeneous Helmholtz equation:

∆v(x) + ω2v(x) = 0. (26)

Now the radiating function v satisfies the same type Dirichlet, Neumann,
Robin, or mixed boundary conditions but with different boundary functions
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involving the boundary values of the Newtonian potential and its deriva-
tives, e.g., in the case of Dirichlet and Neumann problems the boundary
conditions (2) and (3) will be rewritten as follows

{v(x)}− = FD(x) := fD(x) +N(Φ)(x), x ∈ S, (27)

and

{∂nv(x)}− = FN(x) := fn(x) + ∂nN(Φ)(x), x ∈ S, (28)

These problems for homogeneous Helmholtz equation (26) are well studied
in the scientific literature.
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