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CROSS-RATIOS OF PORISIC QUADRILATERALS
Khimshiashvili G.

Abstract. We discuss the cross-ratio map of certain one-dimensional families
of planar quadrilaterals. Three types of such families are considered. First, we
recall our earlier results concerning the image of cross-ratio map for the family of
configurations of a planar quadrilateral linkage with generic sidelengths. Next, we
find the image of cross-ratio map for one-dimensional family of bicentric quadri-
laterals with prescribed incircle and circumcircle. Finally, we obtain analogous
results for families of Poncelet quadrilaterals associated with a pair of confocal
ellipses.
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1. Introduction

We deal with quadrilaterals in Euclidean plane R? with coordinates (x,%),
identified with the complex plane C with coordinate z = x + 1y. Given such a
quadrilateral () we define cross-ratio of (Q as the cross-ratio of the four complex
numbers representing its vertices in the prescribed order. Using complex numbers
in the study of polygons has a long tradition (see, e.g., [1], [2]). We present several
new developments concerned with the above notion of cross-ratio of quadrilateral.

The main aim of this paper is to investigate the values of cross-ratio in certain
one-parameter families of planar quadrilaterals. Three types of such families are
discussed: (1) planar moduli spaces of quadrilateral linkages [3], (2) bicentric
quadrilaterals with the same inscribed and circumscribed circles, and (3) poristic
quadrilaterals arising from Poncelet Porism [6] for a pair of confocal ellipses.

To begin with we discuss quadrilateral linkages (or 4-bar mechanisms [8]).
In spite of the apparent simplicity of these objects, their study is related to
several deep results of algebraic geometry and function theory, in particular, to
the theory of elliptic functions and Poncelet Porism [5]. Comprehensive results
on the geometry of planar 4-bar mechanisms are presented in [8]. Some recent
results may be found in [5], [11].

We complement results of [8] and [11] by discussing several new aspects which
emerged in course of our study of extremal problems on moduli spaces of polygo-
nal linkages (cf. [10], [11], [12]). In this context it is natural to consider polygonal
linkage as a purely mathematical object defined by a collection of positive num-
bers and investigate its moduli spaces [3]. In this paper we deal with quadrilateral
linkages and their planar moduli spaces.

We start by recalling the definition and basic geometric properties of planar
moduli spaces of quadrilateral linkages (Proposition 2.1). With a generic planar
quadrilateral linkage ) one can associate the cross-ratio map C'rg from its planar
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moduli space M(Q) into the extended complex plane C (Riemann sphere). As
was shown in [11] the image of cross-ratio map for a generic quadrilateral linkage
can be explicitly described in terms of its sidelengths (Theorem 3.1 below). This
result serves as a paradigm for the second part of the paper which deals with
the investigation of cross-ratios the so-called poristic quadrilaterals arising
from Poncelet Porism [6]. Our approach yields rather complete results for
bicentric poristic quadrilaterals (Theorem 5.3) and poristic quadrilaterals
associated with confocal ellipses (Theorem 6.4).

In conclusion we mention several possible generalizations and research
perspectives suggested by our results.

2. Moduli spaces of planar quadrilateral linkages

We freely use some notions and constructions from the mathematical
theory of linkages, in particular, the concept of planar moduli space of a
polygonal linkage [3]. Recall that closed n-lateral linkage L(l) is defined
by n-tuple [ of positive real numbers [; (sidelengths of L) such that the
biggest of sidelengths does not exceed the sum of remaining ones. The
latter condition guarantees the existence of a n-gon in Euclidean plane R?
with the lengths of the sides equal to numbers [;. Each such polygon is
called a planar realization of linkage L(I).

Linkage with a telescopic side is defined similarly but now the last side-
length [, is allowed to take any positive value. For brevity we will distinguish
these two cases by speaking of closed and open linkages.

For a closed or open linkage L, its planar configuration space M (L) =
M,(L) is defined as the set of its planar realizations (configurations) taken
modulo the group of orientation preserving isometries of R? [3]. Tt is easy
to see that moduli spaces M (L) have natural structures of compact real
algebraic varieties. For an open n-linkage its planar moduli space is diffeo-
morphic to (n — 2)-dimensional torus 7" 2. For a closed n-linkage with a
generic sidelength vector [, its planar moduli space is a smooth compact
(n — 3)-dimensional manifold. As usual, here and below the term ”generic”
means ”for an open dense subset of parameter space” (in our setting, this
is the space R of sidelengths).

In particular, a closed 4-bar linkage @@ = Q(!) is defined by a quadruple
of positive numbers | = (a,b,c,d) € R}. An open planar 4-linkage (or
planar robot 3-arm) is analogously defined by a triple of positive numbers
l e Ri and its planar moduli space is diffeomorphic to two-torus 7?. The
complete list of possible topological types of planar moduli spaces of closed
4-linkages is also well known (see, e.g., [9]).

Proposition 2.1. The complete list of homeomorphy types of planar
moduli spaces of quadrilateral linkages is as follows: circle, disjoint union
of two circles, bouquet of two circles, two circles with two common points,
three circles with pairwise intersections equal to one point.

Closed linkages with smooth moduli spaces are called non-degenerate.
It is easy to show that non-degeneracy is a generic condition. In the sequel
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we basically deal with non-degenerate quadrilateral linkages.
3. Cross-ratio map of quadrilateral linkage

In this section we use some basic properties of cross-ratio which can be
found in [2]. Recall that the complex cross-ratio of four points p, ¢, z,w € C
is defined as

Z—p w—p p—z2q—2=2
: = - (1)

D, q; 2, w] = :
2—q¢ w—q p—wqg—w

Group 9 acts by permuting points so one can obtain up to six values of the
cross-ratio for a given unordered quadruple of points which are related by
well-known relations [2]. For further use notice also the value of cross-ratio
is real if and only if the four points lie on the same circle of a straight line
2].

Consider now a quadrilateral linkage @ = @Q(a,b,c,d) with smooth
M(Q) (i-e., without aligned configurations) and assume moreover that side-
lengths are pairwise different so that ) has no configurations with coinciding
vertices. Then, for each planar configuration V = (v, vy, v3,v4) € C* of Q,
put

V3 —Vi Vg4 —Vi

Cr(V) = Cr((vi,va, v3, va)) = [V1, Va; V3, V4] = (2)

V3 —Va V4— Vo
This obviously defines a continuous (actually, real-analytic) mapping
Crg : M(Q) — C. Our main aim in this section is to describe its image
I'g = Im Crq which is obviously a continuous curve in C.
To formulate the main result of [11] it is technically more convenient to
work with another map R : M(Q) — C defined by the formula

R<U17 V2, U3, U4> - OT(Ul, U3, U2, U4> - [Ula U3, U2, U4]' (3)
From the transformation properties of cross-ratio follows that
Cr(V)=1+4+ R(V).

So the properties of C'r can be immediately derived from the properties of
R. For brevity we will call R the uniformizer of Q).

The main advantage of map R is that, for any configuration V' of closed
linkage ), the moduli of numbers v; 1 —v; are constant by its very definition.
Consequently, for any V' € M(Q), one has |[R(V)| = 75. In other words,
the R maps M(Q) into the circle of radius {5 with the center at point
0 € C. Moreover, by elementary geometric considerations it follows that
the argument of complex number R(V) is equal to « + 7y, where « and
are the angles at vertices v; and vz of configuration V.

These observations enabled us to get a very precise description of Im R

proof of which can be found in [11].
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Theorem 3.1 For a quadrilateral linkage QQ as above, the following state-
ments hold:

(1) the image Im R is a subset of the circle of radius ac/bd centered at
the point 0 € C;

(2) the image Im R is connected and symmetric about the real azxis con-
taining the point 35 ;

(3) R is surjective if and only if (a+b—c+d)(a—b+c—d)(a—b—c+d) < 0.

Corollary 3.2. The image of Cr is a conjugation-invariant arc of the
circle of radius ac/bd centered at the point 1 € C.

This is immediate in view of the relation between C'r and R.

Corollary 3.3. Cross-ratio map of @) is surjective if and only if ) has
a self-intersecting cyclic configuration.

This follows from the above proof since the argument of cross-ratio of
self-intersecting cyclic configuration is equal to .

Corollary 3.4. Cross-ratio map of @ is surjective if and only if its
planar moduli space has two components. In other words, surjectivity of
cross-ratio map is a topological property.

Indeed, it was shown in [10] that a self-intersecting cyclic configuration
exists if and only if the moduli space has two components. Notice that these
observations yield a simple criterion of connectedness of the moduli space.

Corollary 3.5. The moduli space is connected if and only if

(a+b—c+d)(a—b+c—d)(a—b—c+d) <0.

If linkage Q(a,b,c,d) is not generic then the description of I'g looks a
bit different as can be seen in the case of rhomboid linkage.

Example. Let (1) denote the rhomboid planar linkage with sidelength
vector (1,1,1,1). Here, in addition to the two cyclic configurations of Q(1)
at which C'r(V') has the same real value 1, one should take into account also
the three aligned configurations (1) at which the value of Cr(V) is also
real. Thus it becomes necessary to examine the image and multiplicities
of its real points more carefully. In this case this can be done in a quite
elementary way.

Recall that M(Q) is homeomorphic to a union of three circles S each
pair of which has one common point [3]. Since each of these circles admits
a simple parametrization we can investigate the issue by elementary com-
putations. Let us assume that v; = 0,v5, = 1 and consider first the part X
of M(Q(1)) on which the second and fourth sides of (1) remain parallel.
As a (local) coordinate ¢ on X one can take the angle between positive real
semi-axis and the second side. Then we have v3 = 1 + cos ¢ + 1stn ¢, v4 =
cos ¢ +1sin ¢ and we get Cr(V(¢)) = 1 — (cos ¢ —1sin ¢)>.

This shows that cross-ratio is a surjective mapping from X onto the
circle C'(1,1). The above formula also shows that Cr changes orientation
and its mapping degree is equal to two. Similar considerations for the two
other components of M(Q(1)) show that Crg(1) is surjective and each of
the two real points in its image is covered 4 times.
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Analogous results can be obtained for kites and degenerate quadrilater-
als of other types. Notice that the image of R for a degenerate quadrilateral
with a = b+c+d reduces to a point. We omit a straightforward case-by-case
analysis of degenerate cases and proceed by performing similar considera-
tions in the context of poristic quadrilaterals introduced below

4. Poncelet theorem and poristic quadrilaterals

We are now going to obtain analogs of Theorem 3.1 in another setting
concerned with families of quadrilaterals arising in connection with Poncelet
Porism [6]. To give a precise description of this setting we begin with a few
definitions and remarks.

Recall that Poncelet Porism states that if a pair of ellipses (E7, Es) is
such that there exists a k-gon inscribed in F; and circumscribed about FEs,
then, for each point p of Ey, there exists such a k-gon having p as its vertex
(see, e.g., [2], [6]).

Definition 4.1. A pair of ellipses (E1, ) such that there exists a k-
gon inscribed in E; and circumscribed about FEs is called a Poncelet pair of
ellipses of order k. The set of all such k-gons is called the poristic family of
k-gons P(Ex, Ec) associated with (Fy, Ea).

An interesting and well-understood special case arises when both ellipses
are circles.

Definition 4.2. A polygon P in the plane is called bicentric if there
exist two circles C1, Cy with Cy strictly inside C, such that all vertices of
P lie on C] and each side of P is tangent to Cy at a certain inner point of
this side. The pair of circles (Cy, Cy) is called the frame of bicentric polygon
P. Their centers O; and O5 are called the circumcenter and incenter of P
respectively. The family of all polygons having the same frame is called the
poristic family of bicentric polygons associated with (C1, Cs).

Thus if P is a bicentric k-gon with the frame (Cy, Cs) then there exists a
whole one-dimensional family of bicentric k-gons P; with the same frame. In
fact, each point of C] is a vertex of such a bicentric k-gon. For example, each
triangle A is bicentric with C} being the circumscribed circle (circumcircle)
of A and Cy the inscribed circle (incircle) of A. Each regular polygon is
obviously bicentric. Notice that this definition does not require that P is
convex. So any regular star-shaped polygon is also bicentric.

Many results on bicentric polygons can be found in the literature. The
first detailed paper on properties of bicentric m-gons was published by
N.Fuss [7]. For this reason, a pair of circles constituting the frame of a
bicentric k-gon will be called a Fuss pair (of circles) of order k. Up to a
motion of the plane, a Fuss pair of circles is completely determined by a
triple of non-negative numbers (R, r,d), where R > 0 is the radius of cir-
cumcircle, » > 0 is the radius of incircle, and d > 0 is the distance between
the incenter and circumcenter. This triple will be called the gauge of Fuss
pair.

It is well-known that the gauge (R, r, d) of a Fuss pair of order k satisfies
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an algebraic relation. For k = 3, it is the classical Fuler triangle formula
[2]: R? —d* = 2Rr. For k > 4, this relation is called Fuss’s relation and
reads:

1 1 1
+ = —. (4)
(R+d)? (R—d)? r?

We will only deal with poristic bicentric quadrilaterals and investigate
the cross-ratios of their vertices. Since each poristic bicentric polygon is
cyclic the cross-ratio of its vertices is a real number. We explicitly calculate
the image of arising cross-ratio map in terms of the gauge (R, r,d).

Another special case of Poncelet Porism fitting the context of this paper
arises from the Poncelet pair of confocal ellipses of order four. In this
situation we relate the image of cross-ratio map for the family P(E, &) to
the semi-axes of ellipses.

5. Cross-ratios of poristic bicentric quadrilaterals

To obtain an analog of Theorem 3.1 for bicentric quadrilaterals we need
two lemmas. The first lemma is valid for any pair of circles with the gauge
(R, r,d) and follows by elementary geometric considerations.

Lemma 5.1 Let t; be the length of tangent from point A € C; to Csy
and ty be the length of the segment between the point of tangency and the
second point of intersection with Cy then

2Rrt, +Vd

r2 4 t2 ,where d = 4R*1*t; — r*(r* + t7) (4Rr + 1% + t}).
1

2:

Let ABCD be a poristic quadrilateral associated with a Fuss pair (Cy, Cy)
of order four with the gauge (R, r,d). Using Lemma 5.1 and Fuss’s relation
(4) we can conveniently express the lengths of the sides of ABCD as follows.

Lemma 5.2 Let t = ty be the length of tangent from point A to C,.
Then the length of the sides of ABCD are given by:

7,2 2 2

yABy_t1+t2,!ch_t2+— |CD| = —+— ]DA\_tlth—

where

(R? —T)t1+\/_

t2= r? + 2 D

= (R* — &)t —r?(r* + £5)°

Lemma 5.2 directly leads to the main result of this section.
Theorem 5.3 For a Fuss pair of circles of order four with the gauge
(R, r,d), the cross-ratios of associated poristic quadrilaterals fill the segment

[~p. 4], where

2R2+2r2—2d2—2\/R2— d)2\/R? — (r + d)?
4y/R2 — (r — \/R2 (r+d)?

p:
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Proof. Since the sum of opposite angles equals 7 for each poristic
quadrilateral, its cross-ratio is a negative real number. Thus the image
of cross-ratio is a closed subinterval of (—o0,0). To find the ends of this
interval it is sufficient to find the maximum and minimum of the ratio
ac/bd of products of opposite sides. It is convenient to parameterize poristic
quadrilateral by the length ¢ of the tangent to the inner circle from the first
vertex. Such quadrilateral will be denoted ;. It is easy to see that the
range of values of such ¢ is [\/(R — d)? — r2,y/(R+ d)?> — r?]. By Lemma
5.2 we can write the ratio ab/cd as an explicit function of ¢ and it remains to
find its extremal values on this segment. The proof can now be completed
by elementary but lengthy computations which are omitted. H

Notice that planar moduli spaces of bicentric quadrilaterals are always
singular because of the well-known relation between the sidelengths of tan-
gential quadrilateral. In fact, it is easy to list all possible topological types
of planar moduli spaces.

Proposition 5.4. The planar moduli space of bicentric quadrilateral is
homeomorphic either to bouquet of two circles or to a union of two circles
having three different points in common.

6. Cross-ratios of poristic quadrilaterals for confocal ellipses

Our aim now is to obtain an analogous result for poristic quadrilater-
als associated with confocal ellipses. So let (E1, F3) be a pair of confocal
ellipses. Without loss of generality we can assume that their equations are
given in canonical form as

2 2 2 2

x Yy r Yy
B={ptp=1pB={g+s=1}

where a® — b* = ¢ — d? (as is well known, the latter equality expresses the
confocality condition).

Let us now assume that (E7, F») is a Poncelet pair of order 4. We obtain
first a relation between parameters (a, b, ¢, d) which can be considered as
an analog of Fuss’s relation. To this end notice that, by symmetry, the
Poncelet quadrilateral with the first vertex (a,0) is a rhombus with vertices
(a,0),(0,b), (—a,0), (0, —b). Hence the line L; = {(z,y) : (a—x)b—ay =0}
connecting vertices (a,0) and (0, b) should be tangent to E, at certain point
p1 = (s,t). In other words, the intersection of L; and FE, should consist of
one point.

The system of two equations defining the coordinates of p; is:

2 42

(a—s)b—at:O,S—

c2+$:1

and we need to find the condition that it has exactly one real solution. Using
the linearity of the first equation we reduce this system to one quadratic
equation with real coefficients and then write down the relation between
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(a, b, c,d) which expresses vanishing of the discriminant of the latter equa-
tion. Combining this relation with the confocality condition we obtain the
sought analog of Fuss’s fourth relation.

Reduction to quadratic equation is obtained by substituting ¢t =
into equation of Ey which gives the following quadratic equation on s:

(a—s)b

(a?d* + b*c?)s* — 2ab*cPa + a*c*(b* — d*) = 0.
Vanishing of its discriminant gives the following relation between (a, b, ¢, d):
a’b’ct — a*c*(a*d® + b*c*) (b — d*) = 0.

Combining this condition with the condition of confocality and excluding
¢ from the arising system we get the equation for d of the form: (a® +
4 . o .
b?)d* — b*d® = 0, hence d* = =" From confocality condition we also get
= ﬁ, which gives the following result.
Proposition 6.1. The semi-azes of a pair of confocal Poncelet ellipses
of order four satisfy the following equations:
2 2
a b
(= —F—, d= ——=. (5)
1/a2_’_l)2 ,/a2+b2

In fact, these equations give also a sufficient condition.

Proposition 6.2. If equations (5) are satisfied for a pair of confocal
ellipses, then these ellipses form a Poncelet pair of order four.

Indeed, under these conditions the rectangular with vertices

is tangent to the inner ellipse. Hence it is a Poncelet quadrilateral for
(E17 EQ) .

These two propositions show that equations (5) are analogs of Fuss’s
relation. In fact, it is possible to rewrite this result in a form more similar
to Fuss’s relation. To this end notice that, up to a motion of the plane, a
pair of confocal ellipses is defined by three positive numbers 2¢ (distance
between foci), L > 2¢ (sum of distances to foci for Fy) and [ € (2¢, L)
(sum of distances to foci for Ey). Since the sum of distances to foci is equal
to doubled big semi-axis, equations (5) give the following relation between
(¢, L,1):

LY = L 4217 =0
which may be considered as a direct analog of Fuss’s relation.

Unlike the case of bicentric quadrilaterals the sidelengths of poristic

quadrilaterals do not satisfy the a +c¢ = b+ d relation. Nevertheless it turns
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out that their moduli spaces are always singular and one has an analog of
Proposition 5.4. To show this we refer to the results of [4] about Poncelet
quadrilaterals of confocal ellipses. In particular, it was proved in [4] that
in this case all poristic quadrilaterals are parallelograms. This implies that
their sidelengths do not satisfy Grashof condition. Hence their planar mod-
uli spaces are singular and one may again use the description of singular
moduli spaces given in Proposition 2.1. It is easy to verify that in this case
there appear only two possible topological types of moduli spaces.

Proposition 6.3. For a pair of confocal Poncelet ellipses of order four,
all moduli spaces of poristic quadrilaterals are singular. In each such family
we have two homeomorphy types of planar moduli space: bouquet of two
circles and union of two circles having three different points in common.

It is also known that in this situation the perimeter of poristic quadri-
laterals p(t) is constant and equal to L = 4v/a? + b? [4] (which according to
[2] is four times the radius of the orthoptic circle of Ey). Let P, be a poristic
quadrilateral which is a parallelogram with sidelengths x and y. Hence the
modulus p of its cross-ratio equals z?/y* = 2*/(L —z)?. From (6.1) it easily
follows that maximum of x equals 2% and its minimum equals 2\/(12—2?-
Hence to find the range of value of modulus p of cross-ratio we just need
to find the extremal values of function z?/(L — z)? in this interval. Since
this function is monotonically increasing on this interval it follows that the
maximum of p is achieved at the rectangular

(6 ) (e, ) (e ey (et

and equals ‘;—j Hence the minimum of p equals Z—i

Notice also that the cross-ratio is real only for the above rectangular.
Hence we conclude that the image of cross-ratio map intersects the real
axis only at the points —Z—j and —2—j. These observations together with the
symmetry and connectedness of the image lead to the following result.

Theorem 6.4. For a pair of confocal ellipses satisfying equations (5),
the cross-ratios of associated poristic quadrilaterals form a smooth complez-
congugation invariant loop X passing through the points —‘;—: and —Z—i.

In fact, X is a smooth algebraic loop so it would be interesting to find
its explicit equation.

7. Concluding remarks

First of all, we wish to add that using stereographic projection one
may introduce cross-ratio map for spherical quadrilaterals. The analogs
of Theorems 3.1, 5.3 follow in a straightforward way.

It is also interesting to describe the change of cross-ratio under the action
of the so-called Darboux transformation of quadrilateral linkage [5]. Taking
into account a version of Poncelet Porism for quadrilateral linkages obtained
in [5] one might hope to get certain insights concerning the arising discrete
dynamical system in the image of cross-ratio map.
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Next, one can also consider cross-ratios of families of quadrilaterals aris-
ing as the centers of circles of Steiner 4-chains [2] and try to describe the
image of the corresponding cross-ratio map.

An analogous line of development arises in connection with the notion of
conformal modulus of quadrilateral [1]. In particular, one can try describe
the image and behaviour of conformal modulus for families of poristic bi-
centric polygons and confocal ellipses. Developments in this direction will
be published elsewhere.

Finally, by a way of analogy with our Propositions 5.4 and 6.3, one
can try to describe all possible topological types of planar moduli spaces of
poristic n-gons for arbitrary n. Using the detailed results on the of planar
moduli spaces of pentagonal linkages given in [9] one can solve this problem
for n = 5 but in general it might appear quite hard.
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