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Abstract. The present paper is devoted to the system of degenerate partial

differential equations that arise from the investigation of elastic two layered pris-

matic shells. The well-posedness of the boundary value problems (BVPs) under

the reasonable boundary conditions at the cusped edge and given displacements

at the non-cusped edge is studied. The classical and weak setting of the BVPs

in the case of the zero approximation of hierarchical models is considered.
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Introduction

In the 1950s I. Vekua recommended to investigate cusped prismatic shells
([8], [9], [10]), i.e., plates whose thickness vanishes on some part or on the
whole boundary of the shell projection. One can find a survey concerning
cusped prismatic shells in [3], [4].

The present paper is devoted to the system of degenerate partial dif-
ferential equations that arise from the investigation of elastic two layered
prismatic shells. Using I. Vekua’s dimension reduction method hierarchical
models for elastic layered prismatic shells are constructed in [5]. For each
layer were constructed hierarchical models assuming to be known stress vec-
tor components on the face surfaces of the layered body (structure) under
consideration, while the values of Xij and ui on the interfaces are calcu-
lated from their Fourier-Legendre expansions. For the sake of simplicity we
consider the case of the zeroth approximation (hierarchical model).

Let as in [5] a layered prismatic shell consist of two prismatic shells

Pγ, γ = 1, 2, as plies with the upper
(+)

hγ (x1, x2), γ = 1, 2, and lower
(−)

h γ(x1, x2), γ = 1, 2, face surfaces, herewith,

(+)

h2(x1, x2) ≡
(−)

h1(x1, x2), (x1, x2) ∈ ω,

where ω is the common for the both prismatic shells projection on the plane
x3 = 0. S denotes the joined lateral cylindrical surface parallel to the x3-axis
according to the definition of prismatic shells.

Let us denote the thickness of the layered prismatic shell by

2h(x1, x2) :=
(+)

h 1(x1, x2)−
(−)

h 2(x1, x2)

=
(+)

h 1(x1, x2)−
(−)

h 1(x1, x2) +
(−)

h 1(x1, x2)−
(−)

h 2(x1, x2)= 2h1 + 2h2 ≥ 0,
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where

2hγ(x1, x2) :=
(+)

h γ(x1, x2)−
(−)

h γ(x1, x2) ≥ 0, γ = 1, 2,

are the thickness of the plies.
Under well-known restrictions the following Fourier-Legendre expansions

are convergent(
Xγ

ij, e
γ
ij, u

γ
i

)
(x1, x2, x3, t) =

∞∑
l=0

aγ

(
l +

1

2

)
×
(
Xγ

ijl, e
γ
ijl, u

γ
il

)
(x1, x2, t)Pl(aγx3 − bγ)dx3,

where (
Xγ

ijl, e
γ
ijl, u

γ
il

)
(x1, x2, t)

=

(+)

h∫
(−)

h

(
Xγ

ij, e
γ
ij, u

γ
i

)
(x1, x2, x3, t)Pl(aγx3 − bγ)dx3, l = 0, 1, 2, ...,

aγ :=
1

hγ

, bγ :=
h̃γ

hγ

, 2h̃γ :=
(+)

h γ +
(−)

h γ, γ = 1, 2.

A bar under one of repeated indices means that in this case we do not
use Einstein’s summation convention. Latin and Greek indices take values
1, 2, 3 and 1, 2, correspondingly.

Let

Xγ
ij0(x1, x2, t), eγij0(x1, x2, t), uγ

i0(x1, x2, t), i, j = 1, 2, 3, γ = 1, 2,

be zero-th order moments of the stress Xγ
ij and strain eγij tensors and dis-

placement vector uγ
i components of the plies.

Problem. Determine the stress-strain state of the elastic layered pris-
matic shell considered as a three-dimensional (3D) body (plies and the whole
body may occupy non-Lipschitz domains, see [3]), when on the face surfaces
of the body stress-vectors

Q(+)
ν1 i

(x1, x2,
(+)

h 1(x1, x2), t) and Q(−)
ν2 i

(x1, x2,
(−)

h 2(x1, x2), t) are known,

where
(+)
ν1 and

(−)
ν2 are outward to the body normals to the upper (for the first

ply) and lower (for the second ply) face surfaces (
(+)
ν2 ≡ −

(−)
ν1 ), on the lateral

surfaces arbitrary admissible boundary conditions (BC) are prescribed, and
on the interface the following conditions are fulfilled:(

X1
ji

(+)
ν2i, u

1
j

) (
x1, x2, x3 =

(−)

h 1(x1, x2) ≡
(+)

h 2(x1, x2), t

)

=

(
X2

ji

(+)
ν2i, u

2
j

) (
x1, x2, x3 =

(+)

h 2(x1, x2) ≡
(−)

h 1(x1, x2), t

)
, j = 1, 2, 3.
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For clearness, on the lateral surface S = S1

∪
S2 we confine ourselves to

boundary conditions (BCs) in displacements, i.e., for each lateral boundary
of plies

uγ
i

∣∣∣Sγ , γ = 1, 2, are prescribed. (1)

The system of equations for the displacement in the first fly looks like
[5]

µ
[(
h1v

1
α0,β

)
,β
+
(
h1v

1
β0,α

)
,β

]
+ λ

(
h1v

1
β0,β

)
,α

+1
2

{
(−)

h 1,β

[
λv1γ,γδαβ + µ

(
v1α0,β + v1β0,α

)]
− µv130,α

}
+Q(+)

ν1 α

√(
(+)

h 1,1

)2

+

(
(+)

h 1,2

)2

+ 1 + Φ1
α0 = 0, α = 1, 2;

(2)

µ
(
h1v

1
30,β

)
,β
+

1

2

(
µ
(−)

h 1,β
v130,β − λv1β0,β

)

+Q(+)
ν1 3

√(
(+)

h 1,1

)2

+

(
(+)

h 1,2

)2

+ 1 + Φ1
30 = 0,

(3)

while the system of equations for the displacement in the second fly can be
written as follows

µ
[(
h2v

2
α0,β

)
,β
+
(
h2v

2
β0,α

)
,β

]
+ λ

(
h2v

2
β0,β

)
,α

+
1

2h1

Q1

(+)
ν2 α

√(
(+)

h 2,1

)2

+

(
(+)

h 2,2

)2

+ 1

+Q(−)
ν2 α

√(
(−)

h 2,1

)2

+

(
(−)

h 2,2

)2

+ 1 + Φ2
α0 = 0, α = 1, 2;

(4)

µ
(
h2v

2
30,β

)
,β
+

1

2h1

Q1

(+)
ν2 3

√(
(+)

h 2,1

)2

+

(
(+)

h 2,2

)2

+ 1

+Q(−)
ν2 3

√(
(−)

h 2,1

)2

+

(
(−)

h 2,2

)2

+ 1 + Φ2
30 = 0,

(5)

where by Φγ
j0, j = 1, 2, 3, γ = 1, 2 we denote zero moments of the volume

forces acting on each fly,

vγj0 :=
uγ
j0

hγ

, j = 1, 2, 3.

Problem (4), (5), (1) coincide with the BVP for zero approximation of
Vekuas hierarchical models for a single layered prismatic shells and is studied
in [1].
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In the next section problem (2), (3), (1) is considered.

2. Variational formulation of the problem (2), (3), (1)

Let the thickness of the first fly be

(−)

h1 = 0,
(+)

h1 = h0x
κ
2 , h0, κ = const, h0 > 0, κ ≥ 0.

Denoting by L(0)(x, ∂) the 3 × 3 matrix differential operator generated by
the left-hand side expressions of system (2), (3). We can rewrite (2), (3) in
the following vector form

L1(x, ∂)v1(x) = F 1(x), x ∈ ω, (6)

where

L1(x, ∂) :=

∥∥∥∥∥∥
L11 L12 L13

L21 L22 L23

L31 L32 L33

∥∥∥∥∥∥ ,
L11 := −h1(2µ+ λ)

∂2

∂x2
1

− h1µ
∂2

∂x2
2

− h1,2 µ
∂

∂x2

,

L12 := −h1(µ+ λ)
∂2

∂x1∂x2

− h1,2 µ
∂

∂x1

, L13 =
1

2
µ

∂

∂x1

,

L21 := −h1(µ+ λ)
∂2

∂x1∂x2

− h1,2 µ
∂

∂x1

,

L22 := −h(2µ+ λ)
∂2

∂x2
2

− hµ
∂2

∂x2
1

− h1,2 (µ+ λ)
∂

∂x2

,

L23 =
1

2
µ

∂

∂x2

, L31 =
1

2
λ

∂

∂x1

, L32 =
1

2
λ

∂

∂x2

,

L33 := −h1µ(
∂2

∂x2
1

+
∂2

∂x2
2

) + h1,2 µ
∂

∂x2

,

F 1
j := Q(+)

ν1 j

√((+)

h1,2

)2

+ 1 + Φ1
j0, j = 1, 2, 3,

v1 := (v110, v
1
20, v

1
30)

⊤,

the symbol (·)⊤ means transposition.
Let

v1, v∗ ∈ C2(ω) ∩ C1(ω), v∗ := (v∗10, v
∗
20, v

∗
30)

⊤,

where v1 and v∗ are arbitrary vectors of the above class. We obtain the
following Green’s formula∫

ω

L1v1 · v∗dω = B1(v1; v∗)−
∫
∂ω

T 1
nv

1 · v∗d∂ω =

∫
ω

F 1 · v∗dω. (7)
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Here and in what follows the · denotes the scalar product of two vectors,
n := (n1, n2) is the inward normal to ∂ω:

T 1
n =

{
X1

n10, X
1
n20, X

1
n30

}
,

with

X1
αβ0 = λh1v

1
δ0,δδαβ + µh1(v

1
α0,β + v1β0,α), X1

3β0 = µh1v
1
30,β, X1

33 = λb1v
1
β0,β,

where

B1(v1, v∗) =

∫
ω

{
µh1v

1
j0,βv

∗
j0,β + µh1v

1
β0,jv

∗
j0,β + λh1v

1
i0,iv

∗
j0,j

+
µ

2
v130,βv

∗
β0 +

λ

2
v1β0,βv

∗
30

}
dω. (8)

If we consider BVPs for system (6) with homogeneous boundary conditions
for which the curvilinear integralalong ∂ω in (7) disappears, we arrive at
the equation

B1(v1, v∗) =

∫
ω

F 1 · v∗dω.

Let us consider the following Dirichlet problem in the classical setting:
Find a 3-dimensional vector

v1 = (v110, v
1
20, v

1
30)

⊤

in ω satisfying the system of differential equations (6) in ω and the homo-
geneous Dirichlet boundary condition on

[v1(x)]+ = 0, x ∈ ∂ω. (9)

Note that throughout the paper, for smooth classical solutions, equation
(6) and boundary condition (9) are understood in the classical point-wise
sense, while for generalized weak solutions equation (6) is understood in
the distributional sense and boundary condition (9) understood in the usual
trace sense. To derive the weak setting of the above problem, we have to
apply Green‘s formulas (7). We arrive at the variational equation:

B1(v, v∗) = ⟨F 1, v∗⟩, (10)

where the bilinear form B1(v1, v∗) is defined by (8) and

⟨F 1, v∗⟩ =
∫
ω

(
Q(+)

ν1 j

√((+)

h1,2

)2

+ 1 + Φ1
j0

)
v∗j0dω. (11)

Note that the bilinear form (8) can be represented as follows

B1(v, v∗) :=
1

2

∫
ω

{
a[λe1kko(v

1)e1ii0(v
∗) + 2µe1ij0(v

1)e1ij(v
∗)]
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+
µ

2
v130,jv

∗
j0 +

λ

2
v1β0,βv

∗
30

}
dω,

where e1ij0 is given by the following following expression (see [5])

e1αβ0(v
1) =

1

2
h1(v

1
α0,β + v1β0,α), e1β30 =

1

2
h1v

1
30,β, e1αα0 = h1v

1
α0,α.

Further,we construct the vectors in Ω := {(x; x3) : x ∈ ω,−h1(x) <
x3 < h1(x)} :

wi(x, x3) =
1

2
v1i0(x), i = 1, 2, 3,

w∗
i (x, x3) =

1

2
v∗i0(x), i = 1, 2, 3.

It can be shown that

B(w,w∗) :=

∫
Ω

[
X1

ij(w)e
1
ij(w

∗) +
µ

h1

w3,βw
∗
β +

λ

h1

wβ,βw
∗
3

]
dΩ (12)

= B1(v1, v∗),

where w(x, x3) := (w1, w2, w3) and w∗(x, x3) := (w∗
1, w

∗
2, w

∗
3) are vectors and

B(w,w∗) is the bilinear form corresponding to the three-dimensional poten-
tial energy for the displacement vector w. Owing to the positive definiteness
of the potential energy for 2λ+ 3µ > 0 and µ > 0

B(w,w) ≥ c2

3∑
i,j=1

∫
Ω

[e1ij(w)]
2dΩ +

∫
Ω

λ− µ

h1

wβ,βw3dΩ

= c2

∫
ω

dω

∫ h1

−h1

1

2
ae1ij0(v

1) · 1
2
ae1ij0(v

1)dx3 +
λ− µ

2

∫
ω

v1β0,βv
1
30dω (13)

= c1

3∑
i,j=1

∫
ω

(e1ij0(v
1))2

dω

h1

,

here we have taken into account the following properties
for v(x1, x2)|x∈∂ω = 0,∫

ω

(∇2v)vdω = 0, ∇2 := ∂1 + ∂2,

on the other hand in our case

∂ivi0 = ∂αvα0.

The positive constants c1 and c2 depend only on the material parameters λ
and µ.

Remark 1. B1(v1, v1) = 0 =⇒ v1 = 0. Indeed, if B1(v1, v1) = 0, then
B(w,w) = 0 by (13).
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Denote by D(ω) a space of infinity differentiable functions with compact
support in ω and introduce the linear form [D(ω)]3 by the formula:

(v1, v∗)Xκ
1
=

∫
ω

eij0(v
1)eij0(v

∗)
dω

h1

+
1

4

∫
ω

v1j0,jv
∗
j0,jdω +

1

4

∫
ω

v1j0v
∗
j0dω

=

∫
ω

1

4
[h1(v

1
i0,j + v1j0,i)][h1(v

∗
i0,j + v∗j0,i)]

dω

h1

+
1

4

∫
ω

v1j0,jv
∗
j0,jdω +

1

4

∫
ω

v1j0v
∗
j0dω. (14)

Denote by Xκ
1 := Xκ

1 (ω) the completion of the space
[
D(ω)

]3
with the help

of the norm:

∥v1∥2Xκ
1
=

1

4

∫
ω

[h1(v
1
i0,j + v1j0,i)]

2dω

h1

+
1

4

∫
ω

[(
v1j0,j

)2

+
(
v1j0

)2]
dω (15)

corresponding to the inner product (14) Xκ
1 is a Hilbert space.

Now we can formulate the weak setting of the homogeneous Dirichlet
problem (9), (10):

Find a vector v1 = (v110, v
1
20, v

1
30)

⊤ ∈ Xκ
1 satisfying the equality

B1(v1, v∗) = ⟨F 1, v∗⟩ for all v∗ ∈ Xκ
1 . (16)

Here, the vector F 1 belongs to the adjoint space [Xκ
1 ]

∗, in general, and
⟨·, ·⟩ denotes duality brackets between the spaces [Xκ

1 ]
∗ and Xκ

1 .
Lemma 2.1. The bilinear form B1(·, ·) is bounded and strictly coercive

in the space Xκ
1 (ω), i.e., there are positive constant C0 and C1 such that

|B1(v1, v∗)| ≤ C1∥v1∥Xκ
1
∥v∗∥Xκ

1
, (17)

B1(v1, v1) ≥ C0∥v1∥2Xκ
1

(18)

for all v1, v∗ ∈ Xκ
1 .

Proof.

|B1(v1, v∗)|2 = |B1(w,w∗)|2 =
[ ∫

Ω

{
(2µe1ij(w) + λδije

1
kk(w))e

1
ij(w

∗)

+
µ

h1

w3,jw
∗
j +

λ

h1

wβ,βw
∗
3

}
dΩ

]2
≤ C1

∫
ω

1

2

3∑
i,j=1

(e1ij0(v
1))2

dω

h1

∫
ω

1

2

3∑
i,j=1

(e1ij0(v
∗))2

dω

h1

+
µ2

4

∫
ω

(
v130,j

)2
∫
ω

(
v∗j0

)2

dω +
λ

4

∫
ω

(
v1j0

)2
∫
ω

(
v∗30,j

)2

dω

≤ C2∥v1∥2Xκ
1
∥v∗∥2Xκ

1
.

Whence (17) follows. Inequality (18) immediately follows from (12) and
(13). �
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Theorem 2.2. Let F 1 ∈ [Xκ
1 ]

∗. Then the variational problem (16) has
a unique solution v1 ∈ Xκ

1 for an arbitrary value of the parameter κ and

∥v1∥Xκ
1
≤ 1

C0

∥F∥[Xκ
1 ]

∗ .

Proof. The proof directly follows from the Lax-Milgram theorem (see
Appendix, Theorem A.1). �

It can be easily shown that if F 1 ∈ [L(ω)]3 and suppF 1 ∩ γ0 = ∅, then
F 1 ∈ [Xκ

1 ]
∗ and

⟨F 1 , v∗⟩ =
∫
ω

F 1(x) v∗(x) dω,

since v∗ ∈ [H1(ωε)]
3, where ε is sufficiently small positive number such that

suppF ⊂ ωε = ω ∩ {x2 > ε}. Therefore,

|⟨F 1 , v∗⟩| =
∣∣∣ ∫
ω

F 1(x) v∗(x) dω
∣∣∣ ≤ ||F 1||[L2(ω)]3 ||v∗||[L2(ωε)]3

≤ ||F 1||[L2(ω)]3 ||v∗||[H1(ωε)]3 ≤ Cε ||F 1||[L2(ω)]3 ||v∗||Xκ
1
.

In this case, we obtain the estimate

||v1||Xκ
1
≤ Cε

C0

||F 1||[L2(ω)]3 .

Now we establish a representation of the space Xκ
1 as a weighted Sobolev

space. To this end, we introduce the following space:

Y κ
0 :=

[ 0

W 1
2 ,κ(ω)

]3
,

where
0

W 1
2 ,κ(ω) is a completion D(ω) by means of the norm

∥f∥20

W 1
2 ,κ

(ω)

:=

∫
ω

xκ
2

(
|∇f |2

)
dω, ∇f = (f,1 , f,2 ).

The norm in the space Y κ
0 for a vector (v10, v20, v30) reads as

∥v∥2Y κ
0
:=

∫
ω

xκ
2

( 3∑
j=1

|∇vj0|2
)
dω.

Using Korn’s and Hardy’s inequalities (see Appendix) it (similarly, to
the Theorem 5.1 of [1]) the following theorem can be proved

Theorem 2.3. Let κ < 1. Then the linear spaces Xκ
1 and Y κ

0 as sets of
vector functions coincide and the norms ∥ · ∥

Xκ
1
, ∥ · ∥

Y κ
0
are equivalent.
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Remark 2. From the trace theorem (see Appendix, Theorem A.4) it
follows that the components v1j0 of the vector v1 ∈ Xκ

1 have the zero traces
on ∂ω if κ < 1.

Lemma 2.4. Let κ < 1 and x
1−κ/2
2 F 1

j ∈ L2(ω), j = 1, 2, 3. Then the
linear functional ⟨F 1, v∗⟩ (see (10)) is bounded.

3. Appendix

A.1. The Lax-Milgram theorem. Let V be a real Hilbert space and
let J(w, v) be a bilinear form defined on V ×V . Let this form be continuous,
i.e., let there exist a constant K > 0 such that

|J(w, v)| ≤ K∥w∥
V
∥v∥

V

holds ∀w, v ∈ V and V -elliptic, i.e., let there exist a constant α > 0 such
that

J(w,w) ≥ α∥w∥2
V

holds ∀w ∈ V . Further let F be a bounded linear functional from V ∗ dual
of V . Then there exists one and only one element z ∈ V such that

J(z, v) = ⟨F, v⟩ ≡ Fv ∀v ∈ V

and
∥z∥

V
≤ α−1∥F∥

V ∗ .

Let ω be as in Section 1 and letD(ω) be a space of infinitely differentiable
functions with compact support in ω.

A.2. Hardy’s Inequality. For every f ∈ D(ω) and ν ̸= 1 there holds
the inequality ∫

ω

xν−2
2 f 2(x) dω ≤ Cν

∫
ω

xν
2 |∇f(x)|2 dω, (A.1)

where the positive constant Cν is independent of f .
By completion of D(ω) with the norm

||f ||2◦
W 1

2,ν(ω)
:=

∫
ω

xν
2 |∇ f(x)|2 dω,

we conclude that the inequality (A.1) holds for arbitrary f ∈
◦
W 1

2,ν(ω).
For proof see [2].

A.3. Korn’s Weighted Inequality. Let φ = (φ1, φ2) ∈ [
◦
W 1

2,ν(ω)]
2

and ν ̸= 1. Then ∫
ω

xν
2 [ |∇φ1(x)|2 + |∇φ2(x)|2 ] dω
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≤ Cν

∫
ω

xν
2[φ

2
1,1(x) + φ2

2,2(x) + (φ1,2(x) + φ2,1(x))
2 ] dω,

where the positive constant Cν is independent of φ.
The proof can be found in [2], [11].

A.4. Trace Theorem. Let 0 < ν < 1 and f ∈
◦
W 1

2,ν(ω). Then the
trace of the function f equals to zero on ∂ω.

For proof see [2], [6], [7].
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