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1. Introduction

Porous materials play an important role in many branches of engineer-
ing,e.g., the petroleum industry,chemical engineering , geomechanics and
biomechanics. The general 3D theory of consolidation for elastic materials
with single porosity was formulated by Biot [1]. A theory of consolidation
for elastic materials with double porosity was presented in [2-4], where the
physical and mathematical foundations of this theory were considered. In
this papers the theory of Aifantis unifies a model proposed by Biot for the
consolidation of deformable single porosity media with a model proposed by
Barenblatt for seepage in undeformable media with two degrees of poros-
ity. However, Aifantis’ quasi-static theory ignored the cross-coupling effect
between the volume change of the pores and fissures in the system. The
cross-coupled terms were included in the equations of conservation of mass
for the pore and fissure fluid and in Darcy’s law for solids with double
porosity by several authors [5,7].

The poroelasticity is an affective and useful model for deformation-
driven bone fluid movement in bone tissue. The suggested double porosity
model would consider the bone fluid pressure in the vascular porosity and
the bone fluid pressure in the lacunar-canalicular porosity. The extensive
review of the results in the theory of bone poroelasticity can be found in
[8].

In [9,10] the full coupled linear theory of elasticity for solids with dou-
ble porosity is considered. Four spatial cases of the dynamical equations
are considered. The fundamental solutions are constructed by means of el-
ementary functions and the basic properties of the fundamental solutions
are established. The fundamental solution of quasi-static equations of the
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linear theory elasticity for double porosity solids is constructed and basic
properties are established in [11].

In [12-16] the Aifantis’ quasi-static theory of elasticity for solids with
double porosity is considered. Explicit solutions of the BVPs of the theory
of consolidation with double porosity for half-plane and for half-space are
constructed, Uniqueness and existence theorems of solutions of two and
three-dimensional boundary value problems of the theory of consolidation
with double porosity are proved.

In this paper the 2D full coupled theory of steady vibrations of poroelas-
ticity for materials with double porosity is considered. There the fundamen-
tal and singular matrixes of solutions are constructed in terms of elementary
functions. Using the fundamental matrix we will construct the simple and
double layer potentials and study their properties near the boundary.

2. Basic equations

Let x = (x1, x2) be a point of the Euclidean 2D space R2. Let D+

be a bounded 2D domain (surrounded by the curve S) and let D− be the

complement ofD+∪S. ∂x =

(
∂

∂x1

,
∂

∂x2

)
. Let us assume that the domain

D+ is filled with an isotropic material with double porosity.
The system of homogeneous equations of motion in the 2D linear theory

of elasticity for solids with double porosity can be written as follows [11]

µ∆u′ + (λ+ µ)graddivu′ − grad(β1p
′
1 + β2p

′
2)− ρü′ = 0,

−β1divu̇′ + k1∆p′1 − α1ṗ′1 − γ(p′1 − p′2) = 0,

−β2divu̇′ + k2∆p′2 − α2ṗ′2 + γ(p′1 − p′2) = 0.

Let us suppose that

(u′, p′1, p
′
2) = Re[(u, p1, p2)(x)e

−iωt],

then we obtain the following system of homogeneous equations of steady
vibrations in the 2D linear theory of elasticity for solids with double porosity

µ∆u+ (λ+ µ)graddivu− grad(β1p1 + β2p2) + ρω2u = 0,

iωβ1divu+ (k1∆+ a1)p1 + γp2 = 0,

iωβ2divu+ γp1 + (k2∆+ a2)p2 = 0,
(1)

where u = (u1, u2)
T is the displacement vector in a solid, p1 and p2 are the

pore and fissure fluid pressures respectively. aj = iωαj − γ, ω > 0 is the
oscillation frequency, β1 and β2 are the effective stress parameters, γ > 0
is the internal transport coefficient and corresponds to a fluid transfer rate
with respect to the intensity of flow between the pore and fissures, α1 and
α2 measure the compressibilities of the pore and fissure system, respectively
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λ, µ, are constitutive coefficients, kj =
κj

µ′ , µ′ is the fluid viscosity, κ1

and κ2 are the macroscopic intrinsic permeabilities associated with matrix
and fissure porosity, respectively, ∆ is the 2D Laplace operator. The
superscript “T” denotes transposition.

Note that, neglecting inertial effect (ρ = 0) in (1) we obtain the system
of homogeneous equations of steady vibrations in the Aifantis’ quasi-static
theory of elasticity for solids with double porosity.

We introduce the matrix differential operator

A(∂x, ω) =∥ Alj(∂x, ω) ∥4x4, l, j = 1, 2, 3, 4,

where

Alj := δlj(µ∆+ ρω2) + (λ+ µ)
∂2

∂xl∂xj

, l, j = 1, 2,

Aj3 := −β1
∂

∂xj

, Aj4 := −β2
∂

∂xj

, j = 1, 2,

A3j := iωβ1
∂

∂xj

, A4j := iωβ2
∂

∂xj

, j = 1, 2, A33 := k1∆+ a1,

A34 := γ, A43 := γ, A44 := k2∆+ a2,

δαγ is the Kronecker delta. Then the system (1) can be rewritten as

A(∂x, ω)U = 0, (2)

where U = (u1, u2, p1, p2)
T .

We consider the system of the equations

µ∆u+ (λ+ µ)graddivu+ iωgrad(β1p1 + β2p2) = 0,

−β1divu+ (k1∆+ a1)p1 + γp2 = 0,

−β2divu+ γp1 + (k2∆+ a2)p2 = 0.

(3)

The latter system (3) may be written in the form

AT (∂x, ω)U = 0, (4)

where AT (∂x, ω) is the transpose of matrix A(∂x, ω).
We assume that µµ0k1k2 ̸= 0, where µ0 := λ + 2µ. Obviously, if

the last condition is satisfied, then A(∂x, ω) is the elliptic differential
operator.

4. The basic fundamental matrix

In this section we will construct the fundamental matrix of solutions for
the system (2).

By the direct calculations we get

detA = µµ0k1k2(∆ + λ2
1)(∆ + λ2

2)(∆ + λ2
3)(∆ + λ2

4),
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where λ2
4 = ρω2

µ
, and λ2

j , j = 1, 2, 3, are roots of cubic algebraic

equation (with respect to ξ)

(ρω2 − µ0ξ)(k1k2ξ
2 − k0ξ + a1a2 − γ2)− iωξ(α12 − α11ξ) = 0, (5)

where

α11 = k2β
2
1 + k1β

2
2 , α12 = a2β

2
1 + a1β

2
2 − 2γβ1β2,

k0 = a1k2 + a2k1.

We introduce the matrix differential operator B(∂x, ω) consisting of cofac-
tors of elements of the matrix AT divided on µµ0k1k2:

B(∂x, ω) =
1

µµ0k1k2
∥ Blj ∥4x4, l, j = 1, 2, 3, 4,

where

Blj = δljµ0k1k2(∆ + λ2
1)(∆ + λ2

2)(∆ + λ2
3)

−ξjξl{(λ+ µ)[k1k2∆∆+ k0∆+ a1a2 − γ2] + iω(α11∆+ α12)},

Bj3 = µ(∆ + λ2
4)[β1(k2∆+ a2)− β2γ]ξj, l, j = 1, 2,

Bj4 = µ(∆ + λ2
4)[β2(k1∆+ a1)− β1γ]ξj, ξj =

∂

∂xj

, j = 1, 2,

B3j = −iωµ(∆ + λ2
4)[β1(k2∆+ a2)− β2γ]ξj, j = 1, 2,

B4j = −iωµ(∆ + λ2
4)[β2(k1∆+ a1)− β1γ]ξj, j = 1, 2,

B33 = µ(∆ + λ2
4)[(µ0∆+ ρω2)(k2∆+ a2) + iωβ2

2∆],

B44 = µ(∆ + λ2
4)[(µ0∆+ ρω2)(k1∆+ a1) + iωβ2

1∆],

B34 = −µ(∆ + λ2
4)[(µ0∆+ ρω2)γ + iωβ1β2∆],

B43 = −µ(∆ + λ2
4)[(µ0∆+ ρω2)γ + iωβ1β2∆].

Substituting the vector U(x) = B(∂x, ω)Ψ into (2), where Ψ is a four-
component vector function, we get

(∆ + λ2
1)(∆ + λ2

2)(∆ + λ2
3)(∆ + λ2

4)Ψ = 0.

From here, after some calculations, the vector Ψ can be represented as

Ψ = −
4∑

m=1

dmφm, (6)

where

φm =
π

2i
H

(1)
0 (λmr),
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H
(1)
0 (λmr) is Hankel’s function of the first kind with the index 0

H
(1)
0 (λmr) =

2i

π
J0(λmr) ln r +

2i

π

(
ln

λm

2
+ C − iπ

2

)
J0(λmr)

−2i

π

∞∑
k=1

(−1)k

(k!)2

(
λmr

2

)2k (
1

k
+

1

k − 1
+ ...+ 1

)
, m = 1, 2, 3, 4,

(7)

J0(λmr) =
∞∑
k=0

(−1)k

(k!)2

(
λmr

2

)2k

, r2 = (x1 − y1)
2 + (x2 − y2)

2,

4∑
j=1

dj = 0,
4∑

j=1

djλ
2
j = 0,

4∑
j=1

djλ
4
j = 0,

3∑
j=1

dj(λ
2
4 − λ2

j) = 0,

4∑
j=1

djλ
6
j = 1, dj =

4∏
m=1
j ̸=m

1

λ2
j − λ2

m

.

Substituting (6) into U = BΨ, we obtain the matrix of fundamental solu-
tions for the equation (2) which we denote by Γ(x-y, ω)

Γ(x-y, ω) =∥ Γkj(x-y, ω) ∥4×4 (8)

where

Γkj =
δkj
µ
φ4 + iω

3∑
l=1

Nl
∂2(φl − φ4)

∂xk∂xj

, k, j = 1, 2,

Γj3 = −
3∑

l=1

Nl3
∂φl

∂xj

, j = 1, 2, Γj4 = −
3∑

l=1

Nl4
∂φl

∂xj

,

Γ3j = iω
3∑

l=1

N3l
∂φl

∂xj

, Γ4j = iω

3∑
l=1

N4l
∂φl

∂xj

, j = 1, 2,

Nl =
δl(α12 − α11λ

2
l )

ρω2 − µ0λ2
l

, δl =
dl(λ

2
4 − λ2

l )

µ0k1k2
,

Nl3 = δl [β1(a2 − k2λ
2
l )− β2γ] , Nl4 = δl [β2(a1 − k1λ

2
l )− β1γ] ,

N3l = δl [β1(a2 − k2λ
2
l )− β2γ] , N4l = δl [β2(a1 − k1λ

2
l )− β1γ] ,

Γ33 = −
3∑

l=1

δl[(ρω
2 − µ0λ

2
l )(a2 − k2λ

2
l )− iωβ2

2λ
2
l ]φl,

Γ44 = −
3∑

l=1

δl[(ρω
2 − µ0λ

2
l )(a1 − k1λ

2
l )− iωβ2

1λ
2
l ]φl,

Γ34 =
3∑

l=1

δl[(ρω
2 − µ0λ

2
l )γ − iωβ1β2λ

2
l ]φl,

Γ43 =
3∑

l=1

δl[(ρω
2 − µ0λ

2
l )γ − iωβ1β2λ

2
l ]φl.

Clearly

π

2i
H

(1)
0 (λr) = ln |x− y| − λ2

4
|x− y|2 ln |x− y|+ const+O(|x− y|2).
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It is evident that all elements of Γ(x-y, ω) are single-valued functions
on the whole plane and they have a logarithmic singularity at most. It can
be shown that columns of the matrix Γ(x-y, ω) are solutions to the system
(1) with respect to x for any x ̸= y. By applying the methods, as in the
classical theory of elasticity, we can similarly prove the following;

Theorem 1. The elements of the matrix Γ(x-y, ω) have a logarithmic
singularity as x → y and each column of the matrix Γ(x-y, ω), considered
as a vector, is a solution of system (1) at every point x, if x ̸= y.

Remark. The operator A(∂x, ω)U is not self adjoint. Obviously, it is
possible to construct the fundamental solution of the adjoined operator in
quite a similar manner. Let’s consider the matrixes Γ̃(x, ω) := ΓT (−x, ω)

and Ã(∂x, ω) := AT (−∂x, ω). The following basic properties of Γ̃(x, ω)
may be easily verified:

Theorem 2. Each column of the matrix Γ̃(x-y, ω), considered as a

vector, satisfies the associated system Ã(∂x, ω)Γ̃(x-y, ω) = 0, at every

point x, if x ̸= y and the elements of the matrix Γ̃(x-y, ω) have a
logarithmic singularity as x → y.

5. Singular matrix of solutions

Using the basic fundamental matrix, we will construct the so-called sin-
gular matrix of solutions and study their properties.

Write now the expressions for the components of the stress vector, which
acts on an elements of the arc with the normal n = (n1, n2). Denoting the
stress vector by P (∂x,n)U, we have

P (∂x,n)U = T (∂x,n)u− n(β1p1 + β2p2), (9)

where

T (∂x,n)u =

 µ
∂

∂n
+ (λ+ µ)n1

∂

∂x1

(λ+ µ)n1
∂

∂x2

+ µ
∂

∂s

(λ+ µ)n2
∂

∂x1

− µ
∂

∂s
µ
∂

∂n
+ (λ+ µ)n2

∂

∂x2

u,

∂

∂n
= n1

∂

∂x1

+ n2
∂

∂x2

,
∂

∂s
= n2

∂

∂x1

− n1
∂

∂x2

.

We introduce the following notations R(∂x,n) and R̃(∂x,n), where

R(∂x,n) =



T11(∂x, n) T12(∂x, n) − β1n1 − β2n1

T21(∂x, n) T22(∂x, n) − β1n2 − β2n2

0 0 k1
∂

∂n
0

0 0 0 k2
∂

∂n


,
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R̃(∂x,n) =



T11(∂x, n) T12(∂x, n) − iωn1β1 − iωn1β2

T21(∂x, n) T22(∂x, n) − iωn2β1 − iωn2β2

0 0 k1
∂

∂n
0

0 0 0 k2
∂

∂n


,

By Applying the operator R(∂x,n) to the matrix Γ(x-y and the operator

R̃(∂x,n) to the matrix Γ̃(x-y), we shall construct the so-called singular
matrixes of solutions respectively

R(∂x,n)Γ(x− y) = ∥Rpq∥4×4, R̃(∂x,n)Γ̃(y− x) = ∥R̃pq∥4×4,

The elements Rpq are following:

R11 =
∂φ4

∂n
+ iω

[
2µ

∂

∂s

∂2

∂x1x2

− ρω2n1
∂

∂x1

] 3∑
l=1

Nl(φl − φ4),

R12 =
∂φ4

∂s
+ iω

[
2µ

∂

∂s

∂2

∂x2
2

− ρω2n1
∂

∂x2

] 3∑
l=1

Nl(φl − φ4),

R21 = −∂φ4

∂s
− iω

[
2µ

∂

∂s

∂2

∂x2
1

+ ρω2n2
∂

∂x1

] 3∑
l=1

Nl(φl − φ4),

R22 =
∂φ4

∂n
− iω

[
2µ

∂

∂s

∂2

∂x1x2

+ ρω2n2
∂

∂x2

] 3∑
l=1

Nl(φl − φ4),

R13 =

(
−2µ

∂

∂s

∂

∂x2

+ n1ρω
2

)
3∑

l=1

Nl3φl, R23 =

(
2µ

∂

∂s

∂

∂x1

+ n2ρω
2

)
3∑

l=1

Nl3φl,

R14 =

(
2µ

∂

∂s

∂

∂x2

− n1ρω
2

)
3∑

l=1

Nl4φl, R24 = −
(
2µ

∂

∂s

∂

∂x1

+ n2ρω
2

)
3∑

l=1

Nl4φl,

R3j = k1
∂

∂n
Γ3j, R33 = k1

∂

∂n
Γ33, R34 = k1

∂

∂n
Γ34,

R4j = k2
∂

∂n
Γ4j, R43 = k2

∂

∂n
Γ43, R44 = k2

∂

∂n
Γ44, j = 1, 2,

The elements R̃pq are following:

R̃kl = Rkl, k, l = 1, 2, R̃13 = iω

[
ρω2n1 − 2µ

∂

∂s

∂

∂x2

]
3∑

l=1

N3lφl,

R̃23 = iω

[
ρω2n2 + 2µ

∂

∂s

∂

∂x1

]
3∑

l=1

N3lφl, R̃14 = iω

[
−ρω2n1 + 2µ

∂

∂s

∂

∂x2

]
3∑

l=1

N4lφl,

R̃24 = −iω

[
ρω2n2 + 2µ

∂

∂s

∂

∂x1

]
3∑

l=1

N4lφl, R̃3j = −k1
∂

∂n
Γj3,

R̃33 = k1
∂

∂n
Γ33, R̃34 = k1

∂

∂n
Γ43, R̃4j = −k2

∂

∂n
Γj4,

R̃43 = k2
∂

∂n
Γ34, R̃44 = k2

∂

∂n
Γ44, j = 1, 2.
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It is well-known that in the case of a Lyapunov curve S ∈ C1,α the

function
∂ ln r

∂n
, for x,y ∈ S has a week singularity and

∂ ln r

∂n
is integrable

in the sense of the principal Cauchy value. Consequently,
∂ ln r

∂n
is a singular

kernel on S. It is obvious that, R̃τ (∂y,n)Γ
T (x-y, ω) and R(∂x,n)Γ(x− y)

are singular kernels (in the sense of Cauchy).
Theorem 3. Every column of the matrix [R(∂y,n)Γ(y-x, ω)]

T , con-

sidered as a vector, is a solution of the system Ã(∂x, ω) = 0 at any point
x if x ̸= y and the elements of the matrix [R(∂y,n)Γ(y-x, ω)]

T contain a
singular part, which is integrable in the sense of the Cauchy principal value.

Theorem 4. Every column of the matrix
[
R̃(∂y,n)Γ̃(y-x, ω)

]T
, con-

sidered as a vector, is a solution of the system A(∂x, ω)U = 0 at any point

x if x ̸= y and the elements of the matrix
[
R̃(∂y,n)Γ̃(y-x, ω)

]T
, contain a

singular part, which is integrable in the sense of the Cauchy principal value.
We introduce the potential of a single-layer

Z(1)(x,g) =
1

4i

∫
S

Γ(x− y, ω)g(y)dS

and the potential of a double-layer

Z(2)(x,h) =
1

4i

∫
S

[R̃τ (∂y,n)Γ
T (x-y, ω)]Th(y)dS, (10)

where Γ is given by (8), g and h are four-component continuous (or Holder
continuous) vectors. S is a closed Lyapunov curve.

Now let us consider the operation R(∂x,n) acting on a single-layer po-
tential. We obtain

R(∂x,n)Z
(1)(x, g) =

1

4i

∫
S

R(∂x,n)Γ(x− y, ω)g(y)dy. (11)

The following theorem is valid:
Theorem 5. The vectors Z(j), j = 1, 2, are solutions of the system

(2) in both the domains D+ and D−. When x −→ z ∈ S, from (10) and
(11) we obtain

[Z(2)(z,h)]± = ±h(z) +
1

4i

∫
S

[R̃τ (∂y,n)Γ
T (z-y, ω)]Th(y)dS,

[R(∂z,n)Z
(1)(z, g)]± = ∓g(z) +

1

4i

∫
S

R(∂z,n)Γ(z− y, ω)g(y)dy,
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For the regularity of potentials (10)-(11) in the domains D+ and D− it
is sufficient to assume that S ∈ C2,β, (0 < β < 1) g,h ∈ C1, α(S), ( 0 <
α < β).
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