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NEGATIVE BINOMIAL DISTRIBUTION AND RIEMANN
ZETA-FUNCTION

Makhaldiani N.

Abstract. Description of the Negative binomial distribution (NBD) and Rie-

mann zeta-function is given. New equation connecting NBD and zeta-function

analyzed.

1. Negative binomial distribution

With the advent of any new hadron accelerator the quantities first stud-
ied are charged particle multiplicities. The multiparticle production can
be described by the probability distribution Pn which is a superposition of
some unknown distribution of sources, and the Poisson distribution describ-
ing particle emission from one source. This is a typical situation in many
microscopic models of multiparticle production.

Negative binomial distribution (NBD) is defined as

Pn =
Γ(n+ r)

n!Γ(r)
pn(1− p)r,

∑
n≥0

Pn = 1, (1)

Figure 1: Pn, (1),−r = 2.8, p = 0.3, < n >= 6

Hadronic collisions at high energies (LHC) lead to charged multiplicity
distributions whose shapes are well fitted by a single NBD in fixed intervals
of central (pseudo)rapidity η [1]. NBD provides a very good parametrization
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for multiplicity distributions in e+e− annihilation; in deep inelastic lepton
scattering; in proton-proton collisions; in proton-nucleus scattering.

It is interesting to understand how NBD fits such a different reactions?

1.1. Generating function for NBD

Let us consider NBD for normed topological cross sections

σn
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Γ(n+ k)

Γ(n+ 1)Γ(k)
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< n >
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k

< n >

)−(n+k)
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)n( k

k+ < n >

)k

,

=
Γ(k + n)

Γ(k)n!

( k
<n>

)k

(1 + k
<n>

)k+n
,

r = k > 0, p =
< n >

< n > +k
. (2)

The generating function for NBD is

F (h) =
(
1 +

< n >

k
(1− h)

)−k

=
(
1 +

< n >

k

)−k

(1− ph))−k, (3)

1.2. Multiplicative properties of NBD and corresponding mo-
tion equations

An useful property of NBD with parameters < n >, k is that it is (also)
the distribution of a sum of k independent random variables, with mean
< n > /k, drawn from a Bose-Einstein distribution1

Pn =
1

< n > +1

( < n >

< n > +1

)n

= (eβ~ω/2 − e−β~ω/2)e−β~ω(n+1/2), T = β−1 =
~ω

ln <n>+1
<n>∑

n≥0

Pn = 1,
∑

nPn =< n >=
1

eβ~ω−1
, T ≃ ~ω < n >, < n >≫ 1,

P (x) =
∑
n

xnPn = (1+ < n > (1− x))−1. (4)

This is easily seen from the generating function in (3), remembering
that the generating function of a sum of independent random variables is
the product of their generating functions.

Indeed, for

n = n1 + n2 + ...+ nk, (5)

1A Bose-Einstein, or geometrical, distribution is a thermal distribution for single state
systems.
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with ni independent of each other, the probability distribution of n is

Pn =
∑

n1,...,nk

δ(n−
∑

ni)pn1 ...pnk
,

P (x) =
∑
n

xnPn = p(x)k (6)

This has a consequence that an incoherent superposition of N emitters that
have a negative binomial distribution with parameters k,< n > produces a
negative binomial distribution with parameters Nk,N < n >.

So, for the GF of NBD we have (N=2)

F (k,< n >)F (k,< n >) = F (2k, 2 < n >) (7)

And more general formula (N=m) is

F (k,< n >)m = F (mk,m < n >) (8)

We can put this equation in the closed nonlocal form

QqF = F q, (9)

where

Qq = qD, D =
kd

dk
+
< n > d

d < n >
=
x1d

dx1
+
x2d

dx2
(10)

Note that temperature defined in (4) gives an estimation of the Glukvar
temperature when it radiates hadrons. If we take ~ω = 100MeV, to T ≃
Tc ≃ 200MeV corresponds < n >≃ 1.5 If we take ~ω = 10MeV, to T ≃
Tc ≃ 200MeV corresponds < n >≃ 20. A singular behavior of < n > may
indicate corresponding phase transition and temperature. At that point we
estimate characteristic quantum ~ω. We see that universality of NBD in
hadron-production is similar to the universality of black body radiation.

1.3. NBD motivated equations

For NBD distribution we have corresponding multiplication (convolu-
tion) formulas

(P ⋆ P )n ≡
n∑

m=0

Pm(k,< n >)Pn−m(k,< n >)

= Pn(2k, 2 < n >) = Q2Pn(k,< n >), ... (11)

So, we can say, that star-product on the distributions of NBD corresponds
ordinary product for GF.

It will be nice to have similar things for string field theory (SFT) [4].
SFT motion equation is

QΦ = Φ ⋆ Φ (12)
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For stringfield GF F we may have

QF = F 2. (13)

By construction we know the solution of the nice equation (9) as GF
of NBD, F. We obtain corresponding differential equations, if we consider
q = 1 + ε, for small ε,

(D(D − 1)...(D −m+ 1)− (lnF )m)Ψ = 0,( Γ(D + 1)

Γ(D + 1−m)
− (lnF )m

)
Ψ = 0,

(Dm − Φm)Ψ = 0,m = 1, 2, 3, ...

Dm =
Γ(D + 1)

Γ(D + 1−m)
,Φ = lnF, (14)

with the solution Ψ = F = exp(Φ). In the case of the NBD and p-adic
string, we have correspondingly

D =
x1d

dx1
+
x2d

dx2
;

D = −1

2
△, △ = −∂2x0

+ ∂2x1
+ ...+ ∂2xn−1

. (15)

These equations have meaning not only for integer m.

2. Riemann hypothesis

If I were to awaken after having slept for a thousand years,
my first question would be:

Has the Riemann hypothesis been proven?
David Hilbert

The Riemann hypothesis (RH), the most important open question in
number theory and, possibly, in the whole of mathematics, was first for-
mulated by Bernhard Riemann in 1859, was included in David Hilbert’s
list of challenging problems for 20th-century mathematicians, and is widely
believed to be true. Yet a proof remains tantalizingly out of reach.

What the RH says is that the non-trivial zeros of the Riemann zeta-
function all have real part equal to 1/2. Hilbert and Polya put forward the
idea that the zeros of the Riemann zeta-function may have a spectral origin
: the values of tn such that 1/2 + itn is a non trivial zero of ζ might be the
eigenvalues of a self-adjoint operator. This would imply the RH.

2.1. Zeros of the Riemann zeta-function

The Riemann zeta-function ζ(s) is defined for complex s = σ + it and
σ > 1 by the expansion

ζ(s) =
∑
n≥1

n−s, Re s > 1,
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= δ−s
x

x

1− x
|x⇁1 =

1

Γ(s)

∫ ∞

0

ts−1e−δxt
x

1− x
|x⇁1

=
1

Γ(s)

∫ ∞

0

ts−1et∂τ
1

eτ − 1
|τ⇁0

=
1

Γ(s)

∫ ∞

0

ts−1dt

et − 1
, x = e−τ , δx = x∂x =

xd

dx
(16)

All complex zeros, s = α + iβ, of ζ(σ + it) function lie in the critical
stripe 0 < σ < 1, symmetrically with respect to the real axe and critical
line σ = 1/2. So, it is enough to investigate zeros with α ≤ 1/2 and β > 0.
These zeros are of three type, with small, intermediate and big ordinates.

2.2. Riemann hypothesis

The Riemann hypothesis (RH) [6] states that the (non-trivial) complex
zeros of ζ(s) lie on the critical line σ = 1/2.

At the beginning of the XX century Polya and Hilbert made a conjec-
ture that the imaginary part of the Riemann zeros could be the oscillation
frequencies of a physical system (ζ - (mem)brane). After the advent of
Quantum Mechanics, the Polya-Hilbert conjecture was formulated as the
existence of a self-adjoint operator whose spectrum contains the imaginary
part of the Riemann zeros.

The Riemann hypothesis (RH) is a central problem in Pure Mathematics
due to its connection with Number theory and other branches of Mathemat-
ics and Physics.

2.3. The functional equation for zeta-function

The functional equation is (see e.g. [6])

ζ(1− s) =
2Γ(s)

(2π)s
cos

(πs
2

)
ζ(s) (17)

From this equation we see the real (trivial) zeros of zeta-function:

ζ(−2n) = 0, n = 1, 2, ... (18)

Also, at s=1, zeta has pole with reside 1.
From Field theory and statistical physics point of view, the functional

equation (17) is duality relation, with self dual (or critical) line in the com-
plex plane, at s = 1/2 + iβ,

ζ
(1
2
− iβ

)
=

2Γ(s)

(2π)s
cos

(πs
2

)
ζ
(1
2
+ iβ

)
, (19)

we see that complex zeros lie symmetrically with respect to the real axe.
On the critical line, (nontrivial) zeros of zeta corresponds to the infinite

value of the free energy,

F = −T ln ζ. (20)
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At the point with β = 14.134725... is located the first zero. In the
interval 10 < β < 100, zeta has 29 zeros. The first few million zeros have
been computed and all lie on the critical line. It has been proved that
uncountably many zeros lie on critical line.

The first relation of zeta-function with prime numbers is given by the
following formula,

ζ(s) =
∏
p

(1− p−s)−1, Re s > 1. (21)

Another formula, which can be used on critical line, is

ζ(s) = (1− 21−s)−1
∑
n≥1

(−1)n+1n−s, Re s > 0

=
eiπ(δx+1)

(1− 21−s)δsx

x

1− x
|x⇁1

=
1

1− 21−s

1

Γ(s)

∫ ∞

0

dtts−1eiπe(iπ−t)δx
1

x−1 − 1
|x⇁1

=
1

1− 21−s

1

Γ(s)

∫ ∞

0

dtts−1e(t−iπ)∂τ
eiπ

eτ − 1
|τ⇁0

=
1

1− 21−s

1

Γ(s)

∫ ∞

0

ts−1dt

et + 1
,∫ ∞

0

ts−1dt

et + 1
=

∫ ∞

0

dtts−1e−t
∑
n≥0

(−1)ne−nt = Γ(s)
∑
n≥1

(−1)n+1n−s(22)

2.4. From Qlike to zeta equations

Let us consider the values q = n, n = 1, 2, 3, ... and take sum of the
corresponding equations (9), we find [5]

ζ(−D)F =
F

1− F
(23)

In the case of the NBD we know the solutions of this equation.
Now we invent a Hamiltonian H with spectrum corresponding to the

set of nontrivial zeros of the zeta-function, in correspondence with Riemann
hypothesis,

−Dn =
n

2
+ iHn, Hn = i

(n
2
+Dn

)
,

Dn = x1∂1 + x2∂2 + ...+ xn∂n, H
+
n = Hn =

n∑
m=1

H1(xm),

H1(x) = i
(1
2
+ x∂x

)
= −1

2
(xp̂+ p̂x), p̂ = −i∂x (24)

The Hamiltonian H = Hn is hermitian, its spectrum is real. The case n = 1
corresponds to the Riemann hypothesis.
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The case n = 2, corresponds to NBD,

ζ(1 + iH2)F =
F

1− F
, ζ(1 + iH2)|F =

1

1− F
,

F (x1, x2;h) = (1 +
x1
x2

(1− h))−x2 (25)

Let us scale x2 → λx2 and take λ→ ∞ in (25), we obtain

ζ(
1

2
+ iH(x))e−εx =

1

eεx − 1
,

H(x) = i(
1

2
+ x∂x) = −1

2
(xp̂+ p̂x), H+ = H, ε = 1− h. (26)

Now we scale x→ xy, multiply the equation by ys−1 and integrate

ζ(
1

2
+ iH(x))

∫ ∞

0

dye−εxyys−1 =

∫ ∞

0

dy
ys−1

eεxy − 1
=

1

(εx)s
Γ(s)ζ(s),

= ζ(
1

2
+ iH(x))

1

(εx)s
Γ(s) (27)

so

ζ(
1

2
+ iH(x))x−s = ζ(s)x−s ⇒ H(x)ψE = EψE,

ψE = cx−s, s =
1

2
+ iE, (28)

where the complex constant c is arbitrary, since the solutions are not square-
integrable. To the normalization∫ ∞

0

dxψ∗
E(x)ψE′(x) = δ(E − E ′), (29)

corresponds c = 1/
√
2π.

We have seen that

ζ(
1

2
+ iH)e−εx =

1

eεx − 1
,

H = i(
1

2
+ x∂x) = −1

2
(xp+ px), p = −i∂x, (30)

than

e−εx =

∫
dEa(E, ε)ψE(x) =

∫ ∞

−∞
dEx−1/2−iEa(E, ε),

a(E, ε) =
1

2π

∫ ∞

0

dxx−1/2+iEe−εx =
ε−1/2−iE

2π
Γ(1/2 + iE);

1

eεx − 1
=

∫
dEb(E, ε)ψE(x),

b(E, ε) =
1

2π

∫ ∞

0

dxx−1/2+iE 1

eεx − 1
=
ε−1/2−iE

2π
Γ(1/2 + iE)ζ(

1

2
+ iE),
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ζ(
1

2
+ iH)ψE = ζ(

1

2
+ iE)ψE, ζ(

1

2
+ iE)a(E, ε) = b(E, ε) (31)

There have been a number of approaches to understanding the Riemann
hypothesis based on physics (for a comprehensive list see [7]). According to
the idea of Berry and Keating, [2] the real solutions En of

ζ(
1

2
+ iEn) = 0, (32)

are energy levels, eigenvalues of a quantum Hermitian operator (the Rie-
mann operator) associated with the one-dimensional classical hyperbolic
Hamiltonian

Hc = xp, (33)

where x and p are the conjugate coordinate and momentum.

2.5. Some calculations with zeta-function values

From the equation (26) we have

ζ(
1

2
+ iH(x))e−εx =

1

eεx − 1
, H = i(

1

2
+ x∂x),

ζ(−x∂x)(1− εx+
(εx)2

2
+ ...) =

1

εx
(1− (

εx

2
+

(εx)2

6
+ ...)+

+(
εx

2
+ ...)2 + ...), (34)

so

ζ(0) = −1

2
, ζ(−1) = − 1

12
, ... (35)

A little calculation shows that, the (εx)2 terms cancels on the r.h.s, in
accordance with ζ(−2) = 0.

More curious question concerns with the term 1/εx on the r.h.s. To it
corresponds the term with actual infinitesimal coefficient on the l.h.s.

1

ζ(1)

1

εx
, (36)

in the spirit of the nonstandard analysis (see, e.g. [3]), we can imagine that
such a terms always present but on the l.h.s we may not note them.

For other values of zeta-function we will use the following expansion

1

ex − 1
=

1

x+ x2

2
+ x3

3!
+ ...

=
1

x
− 1

2
+
∑
k≥1

B2kx
2k−1

(2k)!
,

B2 =
1

6
, B4 = − 1

30
, B6 =

1

42
, ... (37)

and obtain

ζ(1− 2n) = −B2n

2n
, n ≥ 1. (38)
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