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A POWER METHOD FOR APPROXIMATION OF SINGULARITIES

Kvernadze G.

Abstract. In this paper, we modify the method suggested in an earlier paper by
the author and overcome its main deficiency. The method enables the approxima-
tion of the locations of jump discontinuities of a function, one by one, by means
of ratios of so called higher order Fourier-Jacobi coefficients of the function.

It is shown that the location of singularity of a piecewise constant function
with one discontinuity is recovered exactly and the locations of singularities of
a piecewise constant function with multiple discontinuities are recovered with
exponential accuracy. Unlike the previous one, the modified method is robust,
since its success is independent of whether or not a location of the discontinuity
coincides with a root of Jacobi polynomial. We also give more detailed estimate
for the error term.

In addition, the stability of the method is discussed and some numerical

examples are presented.
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Jacobi coefficients

to exhibit the Gibbs phenomenon, which makes these partial sums a poor
approximation tool. However, if the locations of the singularities and the
associated jumps of the function are known, then a number of spectral meth-
ods for the reconstruction of the function are already available. Thus, it is
essential to accurately recover the locations of singularities and magnitudes
of jumps utilizing only Fourier coefficients of a function.

A number of authors (see [2] - [8] and the indicated references) studied
the problem of approximating the singularity locations and the associated
jumps of a piecewise smooth function given a finite number of its Fourier-
Jacobi coefficients. The authors have applied a variety of approaches.

In the present paper, we modify the method suggested by us in [5] and
overcome its main deficiency.

It was proved in Theorem 1 [5, p. 140] that the location of singularity
of a piecewise constant function with one discontinuity is recovered exactly
and the locations of singularities of a piecewise constant function with mul-
tiple discontinuities are recovered with exponential accuracy by means of
so called higher order Fourier-Jacobi coefficients of the given piecewise con-
stant function. Namely, the value of x1 for a piecewise constant function
with singularity locations at |x1| > |x2| ≥ |x3| ≥ · · · ≥ |xM | is approximated
to within O(1)(x2/x1)

n.

AMS subject classification (2000): 33C45.

1. Introduction

Truncated Fourier series of functions with jump discontinuous are known
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However, the method’s success was heavily dependent on whether or not
a location of the discontinuity coincided with a root of Jacobi polynomial.
In the modified method we overcome this problem by re-defining the higher
order Fourier-Jacobi coefficients. We also give more detailed estimate for
the error term, and the condition |x1| > |x2| may be also removed.

In addition, the stability of the method is discussed and some numerical
examples are presented.

2. Preliminaries

Throughout this paper we use the following general notations: N, Z+,
and R are the sets of positive integers, nonnegative integers, and real num-
bers, respectively.

By [f ](x) ≡ f(x+)− f(x−) we denote the jump of a piecewise smooth
function f at the point x, where f(x+) and f(x−) denote the right-hand
and left-hand side limits of the function f at a point x.

For quantities an and bn, possibly depending on some other variables
as well, we write an = o(bn) or an = O(bn) if limn→∞ an/bn = 0 or
supn∈N |an/bn| < ∞.

We say that ρ(α,β) is a Jacobi weight if ρ(α,β)(x) ≡ (1 − x)α(1 + x)β,
α > −1 and β > −1. If ρ(α,β) is a Jacobi weight, then by σ(ρ(α,β)) ≡
(P

(α,β)
n (x))∞n=0 we denote the corresponding system of orthogonal polynomi-

als P
(α,β)
n (x) = γn(α, β)x

n+lower degree terms, γn(α, β) > 0, normalized by

the condition P
(α,β)
n (1) =

(
n+ α
n

)
, n ∈ Z+; i.e.,

∫ 1

−1

P (α,β)
n (x)P (α,β)

m (x)ρ(α,β)(x)dx = 0, n ̸= m.

The system σ(ρ(α,β)) is defined uniquely and is called the Jacobi system
of orthogonal polynomials. Some important special cases of the Jacobi
system are the Chebyshev (α = β = −1/2), Legendre (α = β = 0), and
Gegenbauer (α = β) systems.

The following is the recurrence formula for the Jacobi polynomials [9, p.
71])

A(α,β)
n P

(α,β)
n+1 (x) + (x+B(α,β)

n )P (α,β)
n (x) + C(α,β)

n P
(α,β)
n−1 (x) = 0, (1)

where

A(α,β)
n = − 2(n+ 1)(n+ α + β + 1)

(2n+ α + β + 1)(2n+ α + β + 2)
, (2)

B(α,β)
n =

α2 − β2

(2n+ α + β + 2)(2n+ α + β)
, (3)

C(α,β)
n = − 2(n+ α)(n+ β)

(2n+ α + β + 1)(2n+ α + β)
(4)
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for n ≥ 2 and P
(α,β)
0 (x) = 1 and P

(α,β)
1 (x) = (α + β + 2)x/2 + (α− β)/2.

If x
(α,β)
k,n , k = 1, 2, · · · , n, are the zeros of the polynomial P

(α,β)
n (x), then

[9, p. 46]

−1 < x
(α,β)
k,n+1 < x

(α,β)
k,n < x

(α,β)
k+1,n+1 < 1. (5)

The estimate

|P (α,β)
n−1 (x)| = O(1)n−1/2((1−x)1/2+(

1

n
))−α−1/2((1+x)1/2+(

1

n
))−β−1/2 (6)

holds for x ∈ [−1, 1] and n ∈ N (cf. [1, p. 226]), and as it was shown [6,
Lemma 2.1]

((P (α,β)
n (x))2 +(P

(α,β)
n+1 (x))2)−

1
2 = π

1
22−

α+β
2 n

1
2 (ρ(−α+1/2,−β+1/2)(x)+O(

1

n
))−

1
2

(7)
for x ∈ [c, d] ⊂ (−1, 1)

If fρ(α,β) is integrable on [−1, 1], then by

a(α,β)n (f) ≡
∫ 1

−1

f(t)P (α,β)
n (t)ρ(α,β)(t)dt

we denote the nth Fourier-Jacobi coefficient of the function f .
To avoid unnecessary complication of notations, we sometimes omit de-

pendence on parameters α > −1 and β > −1, as they are arbitrary, but
fixed.

For a given function f , the polynomial of k variables a
(k)
n (t1, t2, . . . , tk) ≡

a
(k)
n (f, t1, t2, . . ., tk), ti ∈ R, i = 1, 2, . . ., k, n ≥ k, is defined as

a(0)n ≡ a(0)n (f) ≡ 2(n+ 1)a
(α,β)
n+1 (f)

for n ∈ Z+ and

a(k)n (t1, t2, . . ., tk) ≡ A(α+1,β+1)
n a

(k−1)
n+1 (t1, t2, . . . , tk−1) (8)

+(tk +B(α+1,β+1)
n )a(k−1)

n (t1, t2, . . . , tk−1)

+C(α+1,β+1)
n a

(k−1)
n−1 (t1, t2, . . . , tk−1)

for k ∈ N, where

a(1)n (t1) ≡ A(α+1,β+1)
n a

(0)
n+1 + (t1 +B(α+1,β+1)

n )a(0)n + C(α+1,β+1)
n a

(0)
n−1.

Particular values of the polynomial a
(n)
k (t1, t2, . . ., tk) will be called higher

order Fourier-Jacobi coefficients of the function f and will be denoted by

a(k)n ≡ a(k)n (f) ≡ a(k)n (f, 0, 0, · · · , 0) (9)

for k ∈ N.



28 Kvernadze G.

We also set

b(k)n (t1, t2, . . ., tk) ≡ a(k)n (t1, t2, . . ., tk) + ia
(k)
n+1(t1, t2, . . ., tk) (10)

and
b(k)n ≡ a(k)n + ia

(k)
n+1, (11)

where i = (0, 1).
It is known [5, Lemma 2.2, p. 736] that for a given piecewise constant

function f , defined on [−1, 1], and with jump discontinuities at x1, x2, . . ., xM ,

a(k)n (f, t1, t2, . . . , tk) =
M∑

m=1

Dn(xm)
k∏

s=1

(ts − xm) (12)

for n ≥ k, where

Dn(x) ≡ [f ](x)ρ(α+1,β+1)(x)P (α+1,β+1)
n (x). (13)

Correspondingly, due to (10) and (11),

b(k)n (f, t1, t2, . . . , tk) =
M∑

m=1

D̄n(xm)
k∏

s=1

(ts − xm) (14)

and

b(k)n = (−1)k
M∑

m=1

D̄n(xm)(xm)
k, (15)

where
D̄n(x) ≡ Dn(x) + iDn+1(x) ≡ [f ](x)ρ̄(x)P̄n(x). (16)

3. Main result

Theorem 1. Let f be a piecewise constant function defined on [−1, 1]
with the discontinuities at the points

|x1| > |x2| ≥ |x3| ≥ · · · ≥ |xM |. (17)

Then

x̃1 ≡ − b
(n)
n (f)

b
(n−1)
n (f)

= x1 +
[f ](x2)ρ̄(x2)P̄n(x2)(x2 − x1)

[f ](x1)ρ̄(x1)P̄n(x1)

(x2

x1

)n−1

+ o
(x2

x1

)n

. (18)

Proof. We follow the proof of Theorem 1 [6, p. 140]. First let us

mention that due to (5), P̄n(x) = P
(α+1,β+1)
n (x) + iP

(α+1,β+1)
n+1 (x) ̸= 0 for

x ∈ R and n ∈ N.
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Furthermore, since |P̄n(x)| =
√

(P
(α,β)
n (x))2 + (P

(α,β)
n+1 (x))2 , due to (6)

and (7), we have explicit estimate for the term | P̄n(x2)

P̄n(x1)
|.

Next, by (13), (15), (16), and (17) we have:

x̃1 = − b
(n)
n

b
(n−1)
n

=

∑M
m=1 D̄n(xm)(xm)

n∑M
m=1 D̄n(xm)(xm)n−1

= x1
D̄n(x1) +

∑M
m=2 D̄n(xm)(xm/x1)

n

D̄n(x1) +
∑M

m=2 D̄n(xm)(xm/x1)n−1

= x1(1 +

∑M
m=2 D̄n(xm)(xm/x1)

n−1(xm/x1 − 1)

D̄n(x1) +
∑M

m=2 D̄n(xm)(xm/x1)n−1
)

= x1 +
D̄n(x2)(x2 − x1)

D̄n(x1)
(
x2

x1

)n−1 + o(
x2

x1

)2n−2 + o(
x3

x1

)n−1

= x1 +
[f ](x2)ρ̄(x2)P̄n(x2)(x2 − x1)

[f ](x1)ρ̄(x1)P̄n(x1)
(
x2

x1

)n−1 + o(
x2

x1

)n. (19)

Trivially, x̃1 = x1 for a piecewise constant function with one discontinu-
ity. 2

4. Description of the algorithm and numerical examples

Now we describe the main idea of the algorithm which we propose to
locate the discontinuities.

First of all, introducing modified higher order Fourier-Jacobi coefficients,
b
(k)
n , we have made the method robust: its success is independent of whether
or not a location of the discontinuity coincides with a root of Jacobi poly-
nomial. We also have obtained a better and more accurate estimate for the
error term.

The second, utilizing the identity (14), we do not require anymore that
the locations of the jump discontinuities of a given piecewise constant func-
tion on [−1, 1] satisfy the strict inequality |x1| > |x2| > · · · > |xM |.

Indeed, simply assuming that the locations of discontinuities are −1 <
y1 < y2 < . . . < yM < 1, we consider the higher Fourier-Jacobi coefficients,
setting ti = −1 or ti = 1, i = 1, 2, . . . ,M , in (14). As a result, we obtain:

b(k)n (1, 1, . . . , 1) =
M∑

m=1

D̄n(ym)
k∏

s=1

(1− ym), (20)

where

0 < 1− yM < 1− yM−1 < . . . < 1− y1 < 2, (21)

and

b(k)n (−1,−1, . . . ,−1) = (−1)k
M∑

m=1

D̄n(ym)
k∏

s=1

(1 + ym), (22)



30 Kvernadze G.

where
0 < 1 + y1 < 1 + y2 < . . . < 1 + yM < 2. (23)

In other words, the quantities 1 − y1 and 1 + yM in (20) and (22),
correspondingly, are the greatest by the absolute value. Hence, the estimate
(19) is applicable, where |x1| ≡ 1− y1 or 1 + yM , and we get

lim
n→∞

(1− b
(n)
n (1, 1, . . . , 1)

b
(n−1)
n (1, 1, . . . , 1)

) = y1 (24)

and

lim
n→∞

(−1− b
(n)
n (−1,−1, . . . ,−1)

b
(n−1)
n (−1,−1, . . . ,−1)

) = yM . (25)

(See (32), Tables 7 and 8.)
The recovery of the remaining singularities follows the old scheme: once

x1 is located approximately as x̃1, we consider a new sequence b
(n)
n (x̃1,x̃1,...,x̃1)

b
(n−1)
n (x̃1,x̃1,...,x̃1)

,

which approximates the point of discontinuity ỹ1 with the maximum dis-
tance from x1.

Next, we continue the recovery of the remaining singularities, one by

one, as follows: the sequence b
(n)
n (x̃1,x̃1,ỹ1,ỹ1,0,0...,0)

b
(n−1)
n (x̃1,x̃1,ỹ1,ỹ1,0,0,...,0)

which approximates the

next singularity location the largest by the absolute value, etc.
Once all the singularity locations are recovered, in order to approximate

the associated jumps, we solve the system of linear equations (see (15))

(−1)k
M∑

m=1

fmρ̄(x̃m)P̄n(x̃m)(x̃m)
k = b(k)n (26)

for fm, where k = 1, 2, · · · ,M . As it is known [6, Theorem 4.1], the coeffi-
cient matrix of the linear system (26) is never singular.

Now let us discuss the stability of the suggested method.
If evaluating b

(k)
n we encounter roundoff error e

(k)
n , then our computed

value b̃
(k)
n by the formula (8) yields

|e(k)n | = |b̃(k)n − b(k)n |
= |A(α+1,β+1)

n e
(k−1)
n+1 +B(α+1,β+1)

n e(k−1)
n + C(α+1,β+1)

n e
(k−1)
n−1 |

≤ (|A(α+1,β+1)
n |+ |B(α+1,β+1)

n |+ |C(α+1,β+1)
n |)

×max(|e(k−1)
n+1 |, |e(k−1)

n |, |e(k−1)
n−1 |)

≡ (|Ān|+ |B̄n|+ |C̄n|)max(|e(k−1)
n+1 |, |e(k−1)

n |, |e(k−1)
n−1 |). (27)

In particular, for Gegenbauer polynomials, (see (2) - (4)) |Ān|+ |B̄n|+
|C̄n| < 1 for all n ∈ N. If we assume that the roundoff errors e

(0)
n are

bounded by some constant ϵ > 0, then (27) leads to

|b(k)n − b̃(k)n | ≤ ϵ, (28)
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thus the method is stable for Gegenbauer polynomials.
In order to illustrate the numerical results obtained by the described

algorithm, we will consider the piecewise continuous function studied in [5].

f1(x) =


5 if −1 < x < −1/3,
1 if −1/3 < x < 1/2,
1/3 if 1/2 < x < 4/5,
0 if 4/5 < x < 1.

(29)

The results of calculations are summarized in Tables 1 and 2.

Table 1: The errors in the approximation to the discontinuity locations of
the function f1 using its Fourier-Legendre coefficients.

n 20 40 80

x1 = 4/5 4.5(−5) 5.0(−9) 1.1(−17)

x2 = 1/2 1.3(−5) 5.0(−9) 4.6(−18)

x3 = −1/3 4.3(−14) 4.1(−25) 1.0(−20)

Table 2: The errors in the approximation to the jump magnitudes of the
function f1 using its Fourier-Legendre coefficients.

n 20 40 80

[f ](x1) 2.5(−5) 1.0(−8) 4.7(−18)

[f ](x2) 1.3(−4) 6.8(−9) 3.4(−17)

[f ](x3) 5.1(−5) 6.4(−10) 1.4(−17)

f2 is a piecewise constant function with three jump discontinuities.

f2(x) =


5 if −1 < x < 1/3,
−1 if 1/3 < x < 1/2,
1/3 if 1/2 < x < 4/5,
0 if 4/5 < x < 1.

(30)

Below we present the absolute values of the error in the estimation of the
points of discontinuity of the function f2 obtained by applying the suggested
method and summarized in Tables 3 and 4.
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Table 3: The errors in the approximation to the discontinuity locations for
the function f2 using its Fourier-Legendre coefficients.

n 20 40 80

x1 = 4/5 9.3(−5) 1.0(−8) 2.2(−17)

x2 = 1/2 1.1(−4) 4.2(−8) 3.9(−17)

x3 = 1/3 3.9(−7) 7.1(−11) 9.2(−18)

Table 4: The errors in the approximation to the jump magnitudes of the
function f2 using its Fourier-Legendre coefficients.

n 20 40 80

[f ](x1) 2.5(−4) 3.5(−8) 1.6(−16)

[f ](x2) 5.1(−4) 3.8(−7) 4.9(−17)

[f ](x3) 8.6(−4) 4.6(−7) 1.5(−16)

The function f3 has four jump discontinuities, all within [1/5, 1/2]:

f3(x) =


0 if −1 < x < 1/5,
1 if 1/5 < x < 1/4,
−1/2 if 1/4 < x < 1/3,
3/2 if 1/3 < x < 1/2,
1 if 1/2 < x < 1.

(31)

Table 5: The errors in the approximation to the discontinuity locations of
the function f3 using its Fourier-Legendre coefficients.

n 20 40 80

x1 = 1/2 3.0(−4) 2.5(−8) 5.7(−15)

x2 = 1/3 6.9(−5) 1.1(−7) 1.1(−12)

x3 = 1/4 1.7(−5) 1.4(−8) 1.5(−13)

x4 = 1/5 1.3(−4) 2.1(−5) 7.3(−9)
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Table 6: The errors in the approximation to the jump magnitudes of func-
tion f3 using its Fourier-Legendre coefficients.

n 20 40 80

[f ](x1) 2.7(−3) 7.0(−7) 1.8(−10)

[f ](x2) 1.6(−2) 6.5(−5) 2.0(−8)

[f ](x3) 2.8(−2) 5.5(−4) 1.8(−7)

[f ](x4) 1.6(−2) 4.7(−4) 1.6(−7)

Finally, f4 represents an example of function with a pair of equidistant
singularities, i.e., |x1| = |x2|. Tables 7 and 8 show the approximation
results.

f4(x) =


−1 if −1 < x < −2/3,
0 if −2/3 < x < 2/3,
1/2 if 2/3 < x < 1.

(32)

Table 7: The errors in the approximation to the discontinuity locations for
function f4 using its Fourier-Legendre coefficients.

n 20 40

x1 = 2/3 6.0(−14) 8.2(−29)

x2 = −2/3 1.0(−29) 1.0(−29)

Table 8: The errors in the approximation to the jump magnitudes of func-
tion f4 using its Fourier-Legendre coefficients.

n 20 40

[f ](x1) 1.9(−12) 1.0(−27)

[f ](x2) 4.0(−15) 1.0(−27)

In conclusion let us mention that although there already exists a method
producing better numerical results (see [6]), we still find it interesting to
explore this particular approach. It is conceptually simple and resembles
the Power Method used to approximate eigenvalues of a given matrix.
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