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THE METHOD OF THE SMALL PARAMETER FOR NONLINEAR
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Abstract. In the present paper we consider the geometrically nonlinear and non-

shallow spherical shells. Using the method of the small parameter approximate

solutions of I. Vekua’s equations for approximations N = 0 are constructed.
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I. Vekua constructed several versions of the refined linear theory of thin
and shallow shells, containing the regular processes, by means of the method
of reduction of 3-D problems of elasticity to 2-D [1], [2]. This method for
non-shallow shells in case of geometrical and physical non-linear theory was
generalized by T. Meunargia [3], [4].

The equations of equilibrium of an elastic shell-type body in a vector
form which is convenient for the reduction to the tow-dimensional equations:

∇̂iσ
i +Φ = 0, (1)

where g is the discriminant of the metric quadratic form of the space, ∇̂i

are covariant derivatives with respect to the space coordinates xi, Φ is an
external force, σi are the contravariant constituents of the stress vectors,
x1, x2, x3 are curvilinear coordinates.

Hooke’s law has the following form:

σi = Eijpqepq (Rj + ∂jU) , (2)

where epq are covariant components of the strain tensor

epq =
1

2

(
Rp∂qU +Rq∂pU + ∂pU∂qU

)
,

coefficients of elasticity of the first order for isotropic elastic bodies are
expressed by the Lame coefficients

Eijpq = λgijgpq + µ
(
gipgjq + giqgip

) (
gij = RiRj

)
,

Ri and Ri are covariant and contravariant base vectors of the space and U
is the displacement vector.

we consider the system of equilibrium equations of the two-dimensional
geometrically nonlinear and non-shallow spherical shells which is obtained
from the three-dimensional problems of the theory of elasticity for isotropic
and homogeneous shell by the method of I. Vekua.
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The system of equilibrium equations of the two-dimensional geomet-
rically nonlinear and non-shallow spherical shells may be written in the
following form (approximation N = 0) [3]:

∇α

(0)
σαβ + ε

(0)
σβ3 +

(0)

Fβ = 0,

∇α

(0)
σα3 − ε

(
(0)
σ 1
1 +

(0)
σ 2
2

)
+

(0)

F3 = 0,

(3)

where
(0)

F =
(0)

Φ+
1

2h

[
(1 + ε)2

(+)
σ 3 − (1− ε)2

(−)
σ 3

]
,

(
(0)
σij,

(0)

Φ

)
=

1

2h

h∫
−h

(
1 +

x3
R0

)2

(σij, Φ)dx3, u =
1

2h

h∫
−h

Udx3,

σ3(x1, x2,±h) =
(±)
σ 3.

Here σij are contravariant components of the stress tensor, Pm are Legendre

polynomials of order m, ε =
h

R0

is a small parameter, R0 is the radius of

the midsurface of the sphere.
Hooke’s law has the form:

(0)
σα = λ(rγ∂γu)r

α + µ
[
2(rα∂αu)rα + (rα∂βu)rβ + (rβ∂αu)rβ

+(n∂αu)n
]
+

(
1 +

ε2

3
+
ε4

5
+ · · ·

){
λ
[
(rγ∂γu)∂

αu

+
1

2
(∂γu∂γu)r

α
]
+ µ[2(rα∂αu)∂αu+ (∂αu∂αu)r

α + (rα∂βu)∂βu

+(rβ∂αu)∂βu+ (rβ∂αu)∂βu+ (∂βu∂αu)rβ]
}
+

(1 + ε2 + ε4 + · · ·)

×
{
λ

2
(∂γu∂γu)∂

αu+ µ(∂αu∂αu)∂αu+ µ(∂βu∂αu)∂βu

}
,

(0)
σ3 = λ

[
rγ∂γu+

1

2
∂γu∂γu

]
n+ µ(n∂γu)(rγ + ∂γu),

(4)

(α ̸= β, α, β = 1, 2, γ = 1, 2).

Introduce the notations

(0)
σi = T i,

(0)

F = X ′.

To find components of the displacements vector and stress tensor, we
take the following series of expansions with respect to the small parameter
ε [5], [6]:

(ui, T i, Xi) =
∞∑
k=1

(
(k)
u i,

(k)

T i i,
(k)

X ′
i )ε

k, (5)
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Substituting the above expansions into relations (3), (4) and then equaliz-
ing the coefficients of expansions for εn, we obtain the following system of
equations:

4µ∂z̄

(
1

Λ
∂z

(k)
u +

)
+ 2(λ+ µ)∂z̄

(k)

θ =
(k)

X +

(
(1)
u i, ...,

(k−1)
u i

)
,

µ∇2
(k)
u 3 =

(k)

X 3

(
(1)
u i, ...,

(k−1)
u i

)
,

(6)

where

x1 = tan
θ

2
cosφ, x2 = tan

θ

2
sinφ,

are the isometric coordinates on the shell midsurface of the spherical shell,
θ and φ are the geographical coordinates:

z = x1 + ix2, Λ =
4R2

0

(1 + zz̄)2
, ∇2 =

4

Λ
∂2zz̄

(k)
u + =

(k)
u 1 + i

(k)
u 2,

(k)

θ =
1

Λ

(
∂z

(k)
u + + ∂z̄

(k)

u +

)
.

Introducing the well-known differential operators

∂z =
1

2

(
∂x1 − i∂x2

)
, ∂z̄ =

1

2

(
∂x1 + i∂x2

)
.

(k)

X+ and
(k)

X3 are expressed by
(1)
u+,

(1)
u3, ...,

(k−1)
u +,

(k−1)
u 3 and it is assumed

that they are already found.
When deducing the system (6) we used the formula [1]

1

Λ
∂zΛ∂z̄U

+ = ∂z̄

(
1

Λ
∂zU+

)
+ 2Kε2U+,

where K is the Gaussian curvature of the midsurface of the shell.
Simple calculations show that general solutions of the system (6) can be

represented by means of three analytic functions of z in the form

(k)
u + = −κ

π

∫ ∫
D

Λ(ζ, ζ)φ′(ζ)dξdη

ζ − z
+

 1

π

∫ ∫
D

Λ(ζ, ζ)dξdη

ζ − z

φ′(z) (7)

−ψ(z) + 1

8µh2
λ+ µ

λ+ 2µ

1

π

∫ ∫
D

(k)

F +(ζ, ζ)dξdη

ζ − z

(k)
u 3 = f(z) + f(z)− 2

π

∫ ∫
D

(k)

X 3 ln |ζ − z|dξdη. (8)
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where φ′(z), f(z) and ψ(z) are analytic functions of z = x1 + ix2 ∈ D, and
ζ = ξ + iη.

Further,

(k)

F +(z, z) = − 1

π

∫ ∫
D

 (k)

X+

ζ − z
− κ

(k)

X+

ζ − z

 dξdη,

(
κ =

λ+ 3µ

λ+ µ

)
.

D is the domain of the plane Ox1x2 onto which the midsurface S of the
shell Ω is mapped topologically.

Here we present a general scheme of solution of the boundary value
problem when the domain D is a circle of radius r0.

For the first boundary problem (in stresses):

(k)

T ll + i
(k)

T ls = (λ+ µ)
(k)

θ +2µ∂z̄

( 1

Λ

(k)
u +

)dz̄
dz

=
(k)

P +, |z| = r0, (9)

(k)

T ln =
2µ

Λ

(
∂z

(k)
u 3e

iφ + ∂z̄
(k)
u 3e

−iφ

)
=

(k)

P 3, |z| = r0, (10)

where
(k)

P + and
(k)

P 3 are the known values expressed in terms of the solutions
(k)
u i (k = 1, 2, ..., n− 1), of the previous approximations.

Let the expansions

φ′(z) =
∞∑
n=0

anz
n, ψ(z) =

∞∑
n=0

bnz
n, f(z) =

∞∑
n=0

cnz
n

P̂+ =
∞∑

n=−∞

Ake
ikθ, P̂3 =

∞∑
n=−∞

Bke
ikθ

hold. Here P̂+ and P̂3 are expressed by the particular solutions of equation

(6) and by means of
(k)

P + and
(k)

P 3.
From the boundary condition and comparing the coefficients for einφ

and taking into account that the resultant vector and principal moment are
equal to zero, we obtain

an =
An

2µ

1

[1 + 2κ(1 + r20)r
2
0]r

n
0

(n = 0, 1, ...),

bn =
1

2µ

1

(1 + r20)(n+ 2r20)r
n−1
0

[
An−1

1− (k + 1 + (k + 2)r20)

1 + 2κ(1 + r20)r
2
0βn+1(r0)

− Ā−n−1

]
,

where

βn(r) =
1

zn+2

z∫
0

(z − t)tndt

(1 + zz̄)3
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and for the coefficients cn, we have

cn =
1

2µ

R0

1− r20

Bn

nrn−1
0

.
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