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Abstract. An evolution model with a random right-hand part and an unknown

parameter of the nonlinear member is considered. This parameter is estimated

by means of the maximum likelihood method, having first calculated the Radon–

Nikodym density.
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Introduction

In the present paper we consider the Cauchy problem for evolution-type
quasilinear differential equations with random additive perturbation. In
the general case, perturbation can be a random process whose distribution
is smooth in the sense that it possesses the logarithmic derivative in the
direction of a sufficiently rich set of vectors. Such processes include, in par-
ticular, Gaussian random processes. In the Gaussian case, when we have
the so-called white noise, such equations can be interpreted as stochastic
differential equations. When the linear term contains an unknown parame-
ter, it is of practical interest to estimate this parameter by observations of
the equation solution trajectory and thereby to estimate the nonlinearity
degree of the considered model. Such an idea was for the first time real-
ized in [1]. Confidence intervals indicating the reliability of estimates were
obtained also in that paper.

To obtain the estimate of an unknown parameter in the nonlinear mem-
ber, we apply a maximum likelihood estimate. For this we preliminar-
ily establish the conditions under which distributions for solutions of such
equations are absolutely continuous. In doing so, we use the result of [2].

Preliminary result

Let {Ω,G, P} be a probabilistic space. Let us consider the Hilbert space
H+ ⊂ H ⊂ H− with Hilbert–Schmidt embeddings. For scalar products and
norms we will use the usual notation with indexes of the corresponding
spaces. We denote by L−

2 = L2([0, a], H−) the space of functions defined
on the closed interval [0, a] with values in H−. In an analogous manner we
define the spaces L+

2 and L2; these are spaces of functions defined on [0, a],
having values in H+ and H, respectively, square integrable with respect to
the respective norms. Thus we obtain a different triple of Hilbert spaces

L+
2 ⊂ L2 ⊂ L−

2 (1)
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with Hilbert–Schmidt embeddings.
In the space H−, consider the evolution-type differential equation

dy

dt
− A(t)y(t) + θf(t, y(t)) = ξ(t), (2)

with the initial conditions

0 ≤ t ≤ T, y(0) = ξ(0) = 0 (mod P ). (3)

(i) A(t) is a linear, maybe unbounded operator with a dense definition
domain D(A) ⊂ H not depending on t. Besides, let A(t) be the
generating operator of the evolution family u(t, s), which is strongly
continuous with respect to the set of variables (see [3]);

(ii) The function f(t, y) is defined on [0, T ] × H−, is bounded and takes
its values in H+. Let there exist the partial derivative f ′

y(t, y), which
is the Hilbert–Schmidt operator and satisfies the inequality

sup
y∈D(A)

T∫
0

[[
f ′
y(τ, y)

]]2
H−

dτ ≤
{ T∫

0

T∫
0

[[
u(t, τ)

]]2
H−

dτ dt

}−1

, (4)

where [[K]]M denotes, here and in the sequel, the operator norm for
the linear operator acting in the Hilbert space M .

(iii) ξ = ξ(t) is a random process with finite second moment on [0, T ]
and with values in H−, whose nearly all trajectories are continuous.
Besides, let there exist a bounded and continuous function λ(t, x) :
[0, T ]×H− → H−, such that for any functional φ ∈ C1(L−

2 ) and any
function h(t) : [0, T ] → H+ from L+

2 we have

E

T∫
0

(
[φ′(ξ)](t), h(t)

)
H
dt = Eφ(ξ)

T∫
0

(
λ(t, ξ(t)), h(t)

)
H
dt. (5)

Under the above conditions there exists a solution y(t) of the evolution-
ary problem (2), (3). The distribution of this process is concentrated in L−

2 .
We denote it by µy.

In equation (2), θ is a real but unknown parameter. Using the observa-
tion of the solution ỹ(t) of problem (2), (3), we are to construct the estimate
of the maximal likelihood ŷ(t).

Let us rewrite problem (2), (3) in terms of the triple of spaces (1). In
the space L−

2 , the expression d
dt
− A(t) generates, generally speaking, the

unbounded linear operator A:

(Aφ)(t) = dφ

dt
− A(t)φ(t), φ(0) = 0,
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with definition domain D(A), which by the condition (i) is densely embed-
ded into L−

2 . The inverse operator to A exists and has the form

(A−1φ)(t)
def
= (Uφ)(t) =

t∫
0

u(t, s)φ(s) ds. (6)

The function f(t, y) : [0, T ]×H− → H+ generated, in L−
2 , the nonlinear

operator F :
[F (φ)](t) = f(t, φ(t))

and by the condition (ii) we have F : L−
2 → L+

2 . Moreover, F (φ) is differ-
entiable and

[[F ′(φ)]]L < 1.

The random process ξ(t) in L−
2 can be treated as a random element that

has the logarithmic derivative along constant directions L+
2 of the form λ(ξ).

As seen from (5), if we write it in terms of the space L2, then

E(φ′(ξ), h)L2 = Eφ(ξ)(λ(ξ), h)L2 , h ∈ L+
2 .

Along with problem (2), (3), let us consider the linearized problem

dx(t)

dt
− A(t)x(t) = ξ(t), (7)

with the initial conditions

0 ≤ t ≤ T, y(0) = ξ(0) = 0 (mod P ). (8)

Under the conditions (i) and (iii) the Cauchy problem (7), (8) has a
unique solution x(t). It generates the probability measure or distribution
in the space L−

2 . We denote this measure by µx.
The measures µy and µx are related through a smooth nonlinear trans-

form in the space L−
2 . This transform can be written as

ψ = φ+ UF (φ). (9)

To transform (9) we can apply the main theorem of [2] and establish the
equivalence of the measures µy and µx. In this case we can write explicitly
the corresponding Radon–Nikodym density. Moreover, we can calculate the
Fredholm determinant that figures in the density formula. Let us do this.

To begin with, we find the spectral radius of the compact operator

UF ′ def
= V . This is an integral operator. Let v(t, s) be its kernel. Then

v(t, s) = 0 for s > t.

Let
M = max

t,s
∥v(t, s)∥H
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and

Nx =

T∫
0

∥x(t)∥2H dt.

We have the estimates∥∥(V x)( · )∥∥2

L2
=

∥∥∥∥
·∫

0

v( · , s)x(s) ds
∥∥∥∥2

L2

≤

≤
·∫

0

∥v( · , s)∥2H∥x(s)∥2H ds ≤ NxM
2,

∥∥(V 2x)( · )
∥∥2

L2
=

∥∥∥∥
·∫

0

v( · , s)
[ s∫

0

v(s, τ)x(τ) dτ

]
ds

∥∥∥∥2

L2

≤ NxM
4T

and, in general,∥∥(V nx)( · )
∥∥2

L2
≤ NxM

2n tn−1

(n− 1)!
≤ NxM

2n T n−1

(n− 1)!
.

Hence we obtain

[[V n]]L2 = sup
∥x∥=1

∥V nx∥L2 = sup
∥x∥=1

T∫
0

∥∥(V nx)(t)
∥∥2

H
dt ≤M2n T n

(n− 1)!
.

Therefore, for the spectral radius r of the operator V = UF ′ we get that

r = lim
n→∞

n
√

[[V n]]L2
= 0

and the Neumann series
∞∑
n=1

V nx converges uniformly. Hence we conclude

that
d̃et(I + UF ′) = det(I + UF ′) = 1.

Applying the above-mentioned theorem to transform (9) we conclude
that under the conditions (i), (ii) and (iii) we have µy ∼ µx and the Radon–
Nikodym density is written as

dµy

dµx

(z) =

= exp

{
θ

T∫
0

1∫
0

(
λ
(
t,
dz

dt
−A(t)z(t)+τθf(t, z(t))

)
, f(t, z(t))

)
H
dτ dt

}
. (10)

Main result

Let us apply the obtained result and formula (10) to the Gaussian case.
Assume that the conditions (i) and (ii) are fulfilled. Instead of (iii), we
require the fulfillment of a weaker condition:
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(iv) ξ(t) is a random Gaussian process on [0, T ] with values in H, whose
nearly all trajectories are continuous; Eξ(t) = 0, while its correlation
operator kernel R(t, s) satisfies the inequality

T∫
0

∥R(t, t)∥2 dt <∞. (11)

We define the operator K(t, s) from the operator relation

R(t, s) =

T∫
0

K(t, τ)K∗(s, τ) dτ. (12)

Let R and K be integral operators in L2([0, T ], H) with kernels R(t, s)
and K(t, s), respectively:

(Rφ)(t) =

T∫
0

R(t, s)φ(s) ds, φ ∈ L2([0, T ], H),

(Kφ)(t) =

T∫
0

K(t, s)φ(s) ds, φ ∈ L2([0, T ], H)

and introduce the spaces X+ = RH, X = KH and X− = H with the scalar
products

⟨x, y⟩+ = (R−1x,R−1y)H , ⟨x, y⟩ = (K−1x,K−1y)H .

In this notation, problems (2), (3) and (7), (8) can be considered in the
equipped space

X+ ⊂ X ⊂ X−,

ξ(t) taking its values in X− and the space X having the unit correlation
operator δ(t− s). This makes it possible to use in the equipped space

L+
2 = L2([0, T ], X+) ⊂ L2 = L2([0, T ], X) ⊂ L−

2 ([0, T ], X−)

the appropriate result from [2]. For this, we define the Wiener process w(t)
from the equality

ξ(t) =

T∫
0

K(t, s) dw(s). (13)

Then we make sure that the following statement is valid.

Theorem. Let for problem (2), (3) the conditions (i), (ii) and (iv) be
fulfilled. Then if the integral Fredholm equation of first kind

f(t, y(t)) =

T∫
0

K(t, s)g(s, y) ds
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is solvable with respect to g(t, y), then the measures µy and µx are equivalent
and

dµy

dµx

(u) = exp

{
− θ

T∫
0

(
g(s, u( · )), dw(s)

)
H
− θ2

2

T∫
0

∥∥g(s, u( · ))∥∥2

H
ds

}
,

(14)
where the Wiener process w(t) is defined from (13).

Note that in (14) the first summand in the exponent is understood as
an expanded Skorokhod stochastic integral.

Stochastic equations

Let us consider the case where the right-hand part of equation (2) is
“generalized white” noise. Then an equation is called a stochastic differen-
tial equation in the Hilbert space H and it is usually written in the form

dy(t)− A(t)y(t) dt+ θf(t, y(t)) dt = dw(t) (15)

with the initial condition

y(0) = 0 (mod P ). (16)

Note that problem (15), (16) is understood as an equivalent form of the
following stochastic integral equation

y(t) + θ

t∫
0

u(t, s)f(s, y(s)) ds =

t∫
0

u(t, s) dw(s).

Corollary. Under the conditions (i) and (ii), for the stochastic problem
(15), (16) we have the equivalence of the measures µy and µx. In that case,
the Radon–Nikodym density has the form

dµy

dµx

(u) = exp

{
− θ

T∫
0

(
f(s, u( · )), dw(s)

)
H
− θ2

2

T∫
0

∥∥f(s, u( · ))∥∥2

H
ds

}
.

(17)

Estimation of the maximal likelihood of the parameter θ

Under appropriate conditions, the likelihood functions (14) and (17)
enable us to find a maximal likelihood estimate (MLE) for the unknown
parameter in the nonlinear member if we use the observed solution of the
equation.

Under the conditions of the theorem, for equation (2) with initial con-
dition (3) a MLE has the form

θ̂(u0) = −

T∫
0

(g(s, u0(s)), dw(s))H

T∫
0

∥g(s, u0(s))∥2H ds
,
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while, under the conditions of the corollary, for problem (15), (16) a MLE
has the form

θ̂(u0) = −

T∫
0

(f(s, u0(s)), dw(s))H

T∫
0

∥f(s, u0(s))∥2H ds
.

In these formulas, u0(t) is the observed solution of problem (2), (3) (or of
(15), (16)), respectively.

Using Bernstein inequalities for sums of independent random variables
[1], we can construct confident domains for the above estimates. For this
we can use the method of [1].
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