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Abstract. The paper deals with the problem of estimation by the independent

observations over a random variable of an unknown probability measure in Hilbert

space.
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1. In this work we set and discuss the problem of estimation by the
independent observations over a random variable of an unknown probabil-
ity measure in Hilbert space. This is a random variable with values in the
same space and probability distribution of which is the estimated measure.
Approaches to such problems may be different. We discuss the evaluation
related to finite-dimensional projections, having in mind that these esti-
mates can recover the estimated value with any degree of precision. In
this case, it is possible to apply appropriate methods and results for finite-
dimensional case. We use certain facilities of nonparametric estimation and
show the consistency of the proposed method. The limit theorems showing
the degree of accuracy of the method are proved. Moreover, we pose and
solve the task of evaluating various characteristics of the measure (or weak
distribution) in a Hilbert space.

In the beginning properties of generalized weak distribution in infinite
dimensional Hilbert space are studied. These preliminary results are not
only of interest in themselves, but are used in solving the basic problem.

2. Consider real, separable Hilbert space H and σ-algebra B of its Borel
sets. Thus, the measurable space (H,B) in sense of [1] is considered. Denote
by P the set of all finite-dimensional orthogonal projections on H and by
N the set of all finite-dimensional subspaces of Hilbert space H. So, for
any P ∈ P we have PH ∈ N . When we need to specify the dimension
of finite-dimensional space, or a projector or the range of the orthogonal
projection, we specify the appropriate index putting it for space or operator
respectively at the top or bottom.

The set P−1
L (A) is the cylindrical set in H, where PL ∈ P is the projector

on L ∈ N and A so called base of cylinder is the Borel set in L. Cylinder
sets in H with the bases in L generate σ-algebra, which is denoted by B(L).
It is clear, that B(L) ∈ B. Union of all σ-algebras B(L) is an algebra, which
is denoted by B0. It is called the algebra of cylinder sets. It is known that
the σ-closure of B0 is B.

In some cases, we need the chains of growing finite-dimensional sub-
spaces {Ln}, Ln ⊂ Ln+1, Ln ∈ N , n ∈ N (where N is the set of natural
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numbers) such that
∞∪
n=1

Ln is tight in H. Here and below, in such situa-

tions, the index n indicates the dimension of the space L. In such cases,

the algebra
∞∪
n=1

B(Ln) = B′, is more simple, consists of a countable set of σ-

algebras and has basic, for us, the property that the σ-closure of B′ coincides
with B.

For any finite-dimensional subspace L of the Hilbert space H, consider
signed finite measure µL defined on the Borel σ-algebra BL of the sets from
L. Assume that the family of measures {µL, L ∈ N} is adapted in the sense
that for all spaces L1 ⊂ L2, Li ∈ N , i = 1, 2, and for any Borel set A ∈ BL,
we have

µL1(A) = µL2(P
−1
L1

(A) ∩ L2) (1)

The family of measures {µL, L ∈ N} satisfying the condition (1) and
defined for any finite dimensional spaces L for a given separable Hilbert
space H is called a weak distribution. We use for this weak distribution the
designation µ∗ = {µL, L ∈ N}. If any measure µL, L ∈ N is nonnegative,
then the weak distribution µ∗ = {µL, L ∈ N} is called positive and we write
µ∗ ≥ 0. In case, when the chain of growing finite dimensional subspaces

{Ln}, Ln ⊂ Ln+1, Ln ∈ N , n ∈ N is considered for which
∞∪
n=1

Ln is tight in

H, then the sequence of measures {µLn , n ∈ N} on BLn and satisfying the
condition

µLn(A) = µLn+1(P
−1
Ln

(A) ∩ Ln+1),

is called the sequence of finite dimensional distributions (mainly so-called
sequence of nonnegative measures).

In this paper we use the terminology of a weak distribution for both
cases. The full variation |µ∗| of the weak distribution µ∗ = {µL, L ∈ N} is
colled the weak distribution (sequence of finite dimensional distributions)
|µ∗| = {|µL|, L ∈ N}, where |µL| denotes the full variation of measures
µL = µ+

L − µ−
L . Certainly, |µL| = µ+

L + µ−
L .

If we know a priori, that there exists the measure µ onH, then by related
given weak distribution {µLn , n ∈ N}, it is possible to uniquely reconstruct
the measure. Indeed, knowing µLn for the sequence of subspaces {Ln}, such

that Ln ⊂ Ln+1 and
∞∪
n=1

Ln is tight in H, first to define by µLn the measure

µ on B(Ln), so that µ is defined on the algebra B0 =
∞∪
n=1

B(Ln). Since this

algebra generates B, then it is clear that µ is uniquely defined on B too.

However, in practice, for a given weak distribution it is not always known
whether or not this distributions generated by some sort of measure on
a Hilbert space. To establish this fact additional conditions are needed.
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Different approaches to these questions and the results can be found in a
vast literature (see [2-5]).

Denote by CL(H) the space of continuous and finite functions on L.
CL(H) is a Banach space in uniform norm ∥φ∥CL(H) = sup

x∈L
|φ(x)|. Further,

let C∗(H) be the space of continuous and finite cylindrical functions. Recall
that a function φ(x) is called cylindrical if there is a BL measurable function
φL, such that the following representation is true

φ(x) = φL(PLx). (2)

In this case, L is called the support of this function. In the definition
of C∗(H) in addition we request that φL ∈ CL(H) for some L. C∗(H)
is a linear normed space. In the uniform norm its closure coincides with
C(H)- the space of continuous and finite functions on H, with the norm
∥φ∥C(H) = sup

x∈H
|φ(x)|. Denote by CL(H) the space of continuous and finite

cylindrical functions with base in L. Then C∗(H) =
∪
L

CL(H).

For the functions from space C∗(H) an integral on weak distribution
{µL, L ∈ N} can be defined. This integral following [1] is written in the
form

∫
H
φ(x)µ∗(dx) and defined as∫

H

φ(x)µ∗(dx) =

∫
L

φL(x)µL(dx), (3)

where φL is the function from (2). The measures µL are adapted, so the
definition (3) is correct. This can be seen as well in the usual case (see. [1]).
If L1 ⊂ L2 and

φ(x) = φL1(PL1x) = φL2(PL2x).

Then for x ∈ L2

φL1(PL1x) = φL2(x).

Therefore it follows from adapting property that∫
L2
φL2(x)µL2(dx) =

∫
L2
φL1(x)(PL1x)µL2(dx)

=
∫
L2
φL1(y)µL2(P

−1
L1

(dy)) =
∫
L1
φL1(x)µL1(dx).

The integral, defined in such a way, satisfies the properties of the linear
operation∫

H

(c1φ1(x) + c2φ2(x))µ
∗(dx) = c1

∫
H

φ1(x)µ
∗(dx) + c2

∫
H

φ2(x)µ
∗(dx),

where ci ∈ R,φi ∈ C∗(H), i = 1, 2.
Let M∗(H) be the space of weak distribution on H. This is a linear

space with the operations: for µ∗
i = {µi

L}, i = 1, 2 and c ∈ R we have
µ∗
1+µ

∗
2 = {µ1

L+µ
2
L} and cµ∗

i = {cµi
L}, i = 1, 2. It is possible to set the duality
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between C∗(H) and M∗(H) by formula ⟨φ, µ∗⟩ =
∫
H
φ(x)µ∗(dx) = µ∗(φ).

As we have seen, this duality is well defined. It is also easy to show that
the following equality is valid∫

H

φ(x)(µ∗
1(dx) + µ∗

2(dx)) =

∫
H

φ(x)µ∗
1(dx) +

∫
H

φ(x)µ∗
2(dx).

So that
⟨c1φ1 + c2φ2, µ

∗⟩ = c1⟨φ1, µ
∗⟩+ c2⟨φ2, µ

∗⟩

and
⟨φ, c1µ∗

1 + c2µ
∗
1⟩ = c1⟨φ, µ∗

1⟩+ c2⟨φ, µ∗
2⟩.

Thus the weak distribution is a linear form on the space C∗(H).
Note also the following properties of the integral in the weak distribution:
a) If φ(x) ∈ C∗(H), φ(x) ≥ 0 and µ∗ ≥ 0, then∫

H

φ(x)µ∗(dx) ≥ 0.

b)If the sequence of cylindrical functions φn(x), n ∈ N , has the joint
support L, converges to cylindrical function φ(x) on measure |µL|, and is
majorized by integrable with respect to measure |µL| cylindrical function
ψ(x) with support L, then

lim
n→∞

∫
H

φn(x)µ
∗(dx) =

∫
H

φ(x)µ∗(dx).

c) For the weak distribution µ∗ = {µL, L ∈ N} and (N,N)-measurable
function Φ : H ⇒ H it can be defined related to that weak distribution
µ∗
Φ = {µΦ

L, L ∈ N}, where µΦ
L(A) = µL(Φ

−1(A)), A ∈ B(L).
d) Under the condition c) the formula of change of variable holds∫

H

ψ(φ(x))µ∗(dx) =

∫
H

ψ(x)µ∗
φ(dx).

e) If φ(x) is integrable by µ∗, then

|
∫
H

φ(x)µ∗(dx)| ≤
∫
H

|φ(x)||µ∗|(dx).

Let M∗
L(H) be the space of measures on L. Then the direct prod-

uct
∏
L

M∗
L(H) represents an isomorphic (in the sense of bijections) set in

M∗(H). Indeed, for any fixed in both sets we obtain respectively the space
M∗

L(H) as direct multiplier for first case and the same for other case as
interception of each one-point subset M∗(H).

It is possible to introduce inM∗(H) a norm. Suppose, that µ∗ ∈M∗(H).
We define the norm µ∗ as the common value of total variations of measures
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∥µL∥ = µL
+(H)+µL

−(H) on L. In future assume that ∥µL∥ = 1. In case when
weak distribution is positive, we speak about weak probability distribution.

The main problem of this theory is to find conditions for which weak dis-
tribution is generated by measure. The classical Kolmogorov type theorems
give positive answer to this question, so that any measure always exists in
the space of all functions (more precisely in R∞). The question when this
measure is concentrated in a Hilbert space H is solved in topological theo-
rems under the Minlos-Sazonov type conditions. Other conditions in weak
distribution terms (or pre-measures) were established by Bourbaki and Sko-
rokhod. As Skorokhod has shown (see. [1]), for positive weak distributions
these conditions can be reduced to the question of extending the integral in
weak distribution to a wider class of functions.

From the above definitions it is easy to see that the integral in the weak
distribution can also be defined not only for continuous, but for cylindrical
bounded measurable functions, or direct determination from the beginning,
or as the limit of continuous cylindrical functions. But it turns out that
this is not all. The integral can be extended further to some non-cylindrical
functions.

The notion of weak distribution is in fact, equivalent to the notion of
a quasi-measure (see [3]). Indeed, as we have outlined above, the family
of {BL, L ∈ N} forms a limit structure, indexed by L, with a limit of
B0 = lim

L
B(L).

Furthermore, µ∗ is also a finitely additive set function on B0. So triple
(H,B0, µ

∗) is a space with quasi-measure. Using this fact, we can define the
characteristic functional of a weak distribution, as a characteristic functional
of quasi-measure.

For each y ∈ H, we define a linear mapping fy(x) = (x, y)H of the space
(H,B0) on R. Since the function fy(x) = (x, y) is a cylindrical function, we
can determine the measure µy in R using the relationship

µy(A) = µ∗(f−1
y (A)), A ∈ B(R).

Then the characteristic functional of quasi-measure can be determined
from

χ∗
y(φ) =

∫
R

eitdµy(t).

It is clear that the concept of weak distribution and its characteristic
function are equivalent. In the general case, the problem of determining
the conditions on the characteristic functional for which the measure in
the Hilbert space is determined by the weak distribution has not yet been
solved, but some interesting questions in these terms are solved efficiently.
In particular, by one-dimensional measures µy(A) the whole weak distribu-
tion can be restored (but not the measure generated by this distribution.
This is possible only under the extra conditions). This makes it possible
to define different functionals of weak distribution, such as the moment
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functions. For example, the first two moments can be calculated using the
following formulas:

m1(y) =

∫ ∞

−∞
tµy(dt) =

∫
H

(y, x)µ∗(dx) = (χ∗
y(0), y)

m2(y1, y2) =

∫
R2

∫
tsµy1y2(dtds) =

∫
h

(y1, x)(y2, x)µ
∗(dx) = (χ∗(0)y1, y2).

The second of these form is called the correlation form. In terms of the
correlation we can give simple conditions for the discussed problem in the
case of weak positive distributions: if the correlation form m2(y1, y2) is con-
tinuous in Sazonov topology τS(H), then the weak distribution is generated
by measure in H. Gaussian weak distribution with a identity correlation
operator is not generated by a measure in the initial Hilbert space, but is
generated by measure in the kernel topology, i.e. in the extension of the
given Hilbert space using a Hilbert-Schmidt operator (see [3]).

In the general case, i.e. for a sign-changing weak distributions, such a
criterion is known

Theorem 1 ([3]). Let µ∗ be the weak distribution such that for any ε >
0 and for some ρ > 0, there exists an environment U of zero in (H, τS(H)),
such that

|µ∗(A ∩ {y ∈ H : |(x, y) > ρ})| < ε (4)

for any A ∈ B0 and x ∈ U . Then µ∗ is generated by measure from H
and conversely. And if the initial weak distribution is positive, then for the
validity of the statement it is necessary and sufficient to find for any ε > 0
a compact K such that, µL(L− PL(K)) ≤ ε for any L ∈ N .

Consider a bounded measurable function f(x) = f(x1, x2, ..., xn) in R
n.

Then, for any yi ∈ H, i = 1, 2, ..., n we can consider the cylindrical function

f(x) = f((x, y1), (x, y2), ..., (x, yn)) (5)

and the integral makes sense∫
H

f(x)µ∗(dx) =

∫
Ln

f(t1, t2, ..., tn)µy1,y2,...,yn(dt1dt2...dtn).

Where Ln is the finite dimensional subspace of H and unitarily isomor-
phic to Rn,, µy1,y2,...,yn the image of the weak distribution µ∗ in Ln. If f(x)
is the uniform limit of cylindrical functions fn(x), then we assume that∫

H

f(x)µ∗(dx) = lim
n→∞

∫
H

fn(x)µ
∗(dx)

when this limit exists.
We can specify the classes of non-cylindrical functions for which the in-

tegral
∫
H
f(x)µ∗(dx) can be extended. We describe one of these classes.
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Let f(x) be continuous on (−∞,+∞), real, bounded by limited unit, pos-
itive, decreasing, vanishing at infinity function lim

x→∞
f(x) = 0. The set of

such functions is denoted by F . We show that for any function from F
there exists the integral

∫
H
f(−∥x∥2)µ∗(dx). Indeed, the function fn(x) =

f(−(Pnx, Pnx)) is cylindrical and uniformly converges to f(x). Here Pn is
the orthogonal projection on the n-dimensional subspace Ln ⊂ H. At the

same time, Ln are chosen so that they increase and
∞∪
n=1

Ln is tight in H.

For the numerical sequence αn =
∫
Ln
fn(x)µ

∗
n(dx), n = 1, 2, ..., when n > m

then

|αn − αm| = |
∫
Ln
fn(x)µn(dx)−

∫
Lm

fm(x)µm(dx)|

= |
∫
Ln
fn(x)µn(dx)−

∫
Ln
fm(x)µn(dx)| ≤

∫
Ln

|fn(x)− fm(x)||µn|(dx)

≤ |µn|(Ln) sup
x

|fn(x)− fm(x)|.

Because of the uniform convergence, the last expression can be made arbi-
trarily small at m,n→ ∞. Therefore, the number sequence {αn} converges
to some α.

Denote by W(µ∗) the set of integrable by µ∗ functions. It is clear that
F ⊂ W(µ∗). Since the total mass is the same for every L, then we will
assume that |µL(L)| = 1 and write |µ∗(H)| = 1.

Theorem 2. To induce by measure the weak distribution µ8 it is neces-
sary and sufficient that

lim
ε↓0

∫
H

f(−ε∥x∥2)µ∗(dx) = f(0), f ∈ F (6)

Proof. If µ∗ is induced by measure µ, then using Fatou-Lebesque the-
orem

lim
ε↓0

∫
H
f(−ε∥x∥2)µ∗(dx) = lim

ε↓0

∫
H
f(−ε∥x∥2)µ(dx)

=
∫
H
lim
ε↓0

f(−ε∥x∥2)µ∗(dx) = f(0)µ(H) = f(0).

Conversely suppose we have (6) and check the validity of (4). For any set
A ∈ B0 there exists L ∈ N , such that A ∈ BL. Note, that since

|µ∗(A ∩ {y ∈ H : |(x, y)| > ρ})| ≤ |µ∗(L ∩ {y ∈ H : |(x, y)| > ρ})|

then (4) it is sufficient to check for A = L.
Introduce the notation Ax = {y ∈ H : |(x, y)| > ρ}. By the condition

(6) for any 0 < δ < 1, there is ε0 > 0, such that∫
H

f(−ε∥x∥2)µ∗(dx) > 1− δ, when 0 < ε < ε0.
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So we write

1− δ <
∫
L
f(−ε∥x∥2)µL(dx) ≤

∫
L∩Ax

f(−ε∥y∥2)|µL(dy)|

+
∫
L−(L∩Ax)

f(−ε∥y∥2)|µL(dy)| ≤

|µL(L ∩ Ax)|+ sup
y∈L:|(x,y)|≤ρ

f(−ε∥y∥2)(1− |µL(L ∩ Ax)|)

= sup
y∈L:|(x,y)|≤ρ

f(−ε∥y∥2) + (1− sup
y∈L:|(x,y)|≤ρ

f(−ε∥y∥2))|µL(L ∩ Ax)|.

From that we obtain

|µL(L ∩ Ax)| < 1− δ

1− sup
y∈L:|(x,y)|≤ρ

f(−ε∥y∥2)
. (7)

For an arbitrary ρ > 0, consider the open sphere: U = {x ∈ H : ∥x∥ < ρ2}.
Using the inequality |(x, y)|2 ≤ ∥x∥∥y∥ < ρ2∥y∥, we obtain the following
estimation

min
x∈U

sup
y∈L:|(x,y)|≤ρ

f(−ε∥y∥2) ≥ f(0)

and from (7)

|µL(L ∩ Ax)| < 1− δ

1− f(0)
. (8)

Fix first ρ > 0, then for the given ε > 0 choose δ, such that f(0) > 1− δ
1−ε

.
δ determines ε0. Finally from (8) we obtain |µL(L∩Ax)| < ε for any x ∈ U .

Remark 1. This theorem is a generalization of the Skorokhod result
(see [1], Lemma 2) in the case of sign changing weak distribution. For
positive measures in [1] the function f(x) = ex is used on [0,∞).

Remark 2. Further, when considering the weak probability distribu-
tions, we need criteria only for positive quasi-measures.

A good example of the construction described above is the case, when the
weak distribution is positive and is given by adapted system of probability
distributions:

µ∗ = {Fn(x1, x2, ..., xn), n = 1, 2, ...}

with the adapting conditions

Fn(x1, x2, ..., xm−1,−∞, xm+1, ..., xn) = 0,

Fn+m(x1, x2, ..., xn,+∞, ...,+∞) = Fn(x1, x2, ..., xn),

Fn(x1, x2, ..., xn) = Fn(xi1 , xi2 , ..., xin),

where i1, i2, ..., in any permutation of the indexes. Here we have an in-
creasing system of finite dimensional spaces (without loss of generality we
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can assume {Ln = Rn, n = 1, 2, ...})) and µRn are the Lebesgue-Stieltjes
measures generated by distribution Fn(x1, x2, ..., xn).

In such cases the integral by weak distribution∫
H

f(x)µ∗(dx) =

∫
H

f(x)F (d∗x).

The situation becomes more evident when the positive weak distribution
is smooth. We call such a weak distribution µ∗ = {µL, L ∈ N} that for each
L measure µL is absolutely continuous with respect to Lebesgue measure

mL, with density
dµL

dmL

(x) = fL(x1, x2, ..., xdimL). In this case the adapting

condition of measures is equivalent to following: if L1 ⊂ L2, then

fL1(x1, x2, ..., xdimL)

=
∫
R

∫
R
...
∫
R
fL2(x1, ..., xdimL1 , xdimL1+1, xdimL1+2, ..., xdimL2)

dxdimL1+1dxdimL1+2...dxdimL2 .

And if dimL = 1, then
∫
R
fL(x)dx = 1.

The system of functions f(x) = {fL(x1, x2, ..., xdimL), L ∈ N} satisfying
these conditions is called an adapted system of densities.

Smooth weak distribution is always given by adapted system of the
densities and we write integral by the smooth weak distribution as∫

H

φ(x)µ∗(dx) =

∫
H

φ(x)F (d∗x) =

∫
H

φ(x)f(x)(d∗x).
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