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THREE-LEVEL IDENTICAL ATOMS IN ONE AND TWO-MODE
QUANTUM FIELDS I: INTERNAL ELECTRIC DIPOLE AND

QUADRUPOLE COUPLING IN SINGLE ATOM BY SINGLE MODE

Giorgadze G., Melikishvili Z.

Abstract. We consider a single atom from the system of identical non-overlapping

atoms coupled to the one and two-mode electromagnetic quantum fields. Each

atom is assumed to have only three levels, either |1 >, |2 > and |3 > and under

the following conditions: (i) all the atom-photon interactions are electric dipole

or electric quadrupole nature; (ii) only three atomic levels are included in the

interaction; (iii) one or two quantized laser modes interact with this three-level

system; (iv) each of these modes interacts with only one couple of levels; (v) so,

from three possible couples of levels, only two of them interact directly. Levels

of the third couple interact only by means of an intermediate level.
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1. Three-level atom plus one mode

Consider a system of one three-level atom and one mode of the electro-
magnetic field. These two are coupled by the dipole/quadrupole interaction
with the rotating wave approximation (RWA), and the system is described
by the Hamiltonian

H = HA +HF +H ′, (1)

where the free atomic part HA and the free field part HF are

HA =
3∑

j=1

~ωjb
+
j bj (2)

and
HF = ~ωa+a. (3)

Above ~ωj, j = 1, 2, 3 is the j-th atomic level energy, ω is the single mode
laser frequency, b+j and bj are the creation and annihilation operators of an
electron at level j, while a+ and a are those of a photon in the mode. bj, b

+
j

obey Fermion commutation rules, and a+a a Boson commutation rules [1]:

{bj, b+j } = δij, {bj, bj} = 0 = {b+j , b̂+j }, [a, a+] = 1, [bi, â] = 0, etc. (4)

We assume that due to above mentioned couple restriction direct dipole (or
quadrupole) transitions are allowed between atomic levels |1 > and |2 >
and between |2 > and |3 >, and forbidden between levels |1 > and |3 >.
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We express the laser field operators in terms of the annihilation and
creation operators a, and a+ the laser field mode which has the wave vector
k, frequency ω = ck and polarization p̂. Thus we write the laser field
operator at position R in the form

E(R) = i~
√

2πω

~V
p̂(aeikR − a+e−ikR). (5)

Here R is not an operator. So in such an approximation atom has only
electronic levels.

2. Dipole and quadrupole transitions

We assume that atomic levels |i > and |j > are connected by an electric
multipole transition of order m, i.e. that the first non-vanishing multipole
transition moment between the levels of atom is that of q(m)[2],

q(m) = q12b
+
1 b2 + q21b

+
2 b1 + q23b

+
2 b3 + q32b

+
3 b2 (6)

where qij ≡< i|q(m)|j > is a tensor of order m. It is assumed for simplicity
that the atom has no permanent multipole moment of order m in either
|1 >, |2 > and |3 > (see fig. 4.1). The interaction Hamiltonian Ĥ ′ is the
tensor product [2]

Ĥ ′ = − 1

m!
q(m)∇m−1E(R) (7)

can be written in the normally ordered form according to (5) and (6), after

the RWA the Ĥ ′ is given, depending on the three possible types of the
atomic level configurations, by [1]

H ′ = H ′
Ξ ≡ ξab+2 b1 + ξ∗a+b+1 b2 + ηab+3 b2 + η∗a+b+2 b3 (Ξ− type), (8)

H ′ = H ′
Λ ≡ ξab+2 b1 + ξ∗a+b+1 b2 + ηa+b+3 b2 + η∗ab+2 b3 (Λ− type), (9)

H ′ = H ′
V ≡ ξa+b+2 b1 + ξ∗ab+1 b2 + ηab+3 b2 + η∗a+b+2 b3 (V − type), (10)

where

ξD =

(
2πω

~V

) 1
2

q12p̂e
ikR, ηD =

(
2πω

~V

) 1
2

q23p̂e
ikR, (11)

are electric dipole coupling constants and

ξQ = i

(
2πω3

~V c2

) 1
2

q12k̂p̂e
ikR, ηD = i

(
2πω3

~V c2

) 1
2

q23k̂p̂e
ikR, (12)

are electric quadrupole coupling constants where k = kk. After RWA in
(4.8) the following terms are neglected, for Ξ-type: ab+2 b1, âb

+
1 b2, ab

+
2 b3,

a+b+3 b2; for Λ-type: a+b+2 b1, ab
+
1 b2, ab

+
3 b2, a

+b+2 b3; and for V -type: ab+2 b1,
a+b+1 b2, a

+b+3 b2, ab
+
2 b3. So ξ and η are coupling constants (see fig. 1). Al-

though it is always possible to make ξ and η real and positive, if desired,
by choosing the relative phases of the state vectors properly, we treat ξ and
η as complex here.
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Fig. 1. The three possible energy level configurations for a three-level atom. The arrows

indicate the transitions where ξ and η are defined.

The Hamiltonian eq. (7) has two obvious constant operators of motion
[1]: One is the total electron number operator PE

PE = b+1 b1 + b+2 b2 + b+3 b3 (13)

and the other is the so-called excitation number operator N̂ given for each
atom type by

N = a+a+ b+3 b3 − b+1 b1 + I (Ξ− type), (14)

N = a+a+ b+2 b2 (Λ− type), (15)

N = a+a− b+2 b2 + I (V − type). (16)

N is a sum of the photon number operator and the ”atomic excitation”
number operator. In eqs. (14) and (16) a unit operator I is added so that
the eigenvalues of N start at zero, which corresponds to no photons and the
lowest atomic state.

We separate H into two parts HI and HII , in which HI consists of N
and PE only. Thus both HI an HII are constants of motion:

H = HI +HII, (17)

and

[HI , HII] = 0, (18)

where for Ξ-type:

HI = ~ω(N − I) + ~ω2PE, HII = −~∆lb
+
1 b1 −∆rb

+
3 b3 +H ′

Ξ (19)

for Λ-type:

HI = ~ωN + ~(ω2 − ω)PE, HII = −~△lb
+
1 b1 − ~△rb

+
3 b3 +H ′

Ξ (20)

and for V -type:

HI = ~ω(N − I) + ~(ω2 + ω)PE, HII = ~∆lb
+
1 b1 + ~∆rb

+
3 b3 + Ĥ ′

V . (21)
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We have defined the detuning parameters ∆l and ∆r by

∆l ≡ |ω12| − ω,∆r ≡ |ω23| − ω, (22)

with ωij| = ωi−ωj,, where l and r stands for ”left” and ”right”, respectively
as in fig. 2. The separation given in eq. (17), with eq. (18) as a consequence,
was first noted by Walls for Ξ-type [7]. Note that the separation of H into
HI and HII shown in eq. (17) and eqs. (18) is not unique. HII as chosen
in eqs. (18), however, provides the maximum symmetry to the resultant
expressions [1].

Fig. 2. The atomic level diagrams under the two-photon resonance condition. Two mode

case. Mode l couples with the dipole d12 and mode r couples with the dipole d23.

Due to eq. (18) the time translation operator U(t) ≡ exp(−iHt) factors:

U(t) = UI(t)UII(t) (23)

with
UI(t) = exp(−iHIt), UII(t) = exp(−iHIIt) (24)

U(t) was calculated by Yoon and Eberly [1] in terms of a matrix represen-
tation with a set of properly ordered Fock states as its basis. A Fock state
|nA

1 , n
A
2 , n

A
3 ;n

F > is a common eigenstate of PE and N and hence of HI ,
where nA

j , j = 1, 2, 3 is the electron occupation number at the jth atomic
level, and nF is the photon occupation number in the mode. We restrict
ourselves to the one-electron case: PE = nA

1 + nA
2 + nA

3 = 1 for a while.
An excitation number N, which is an eigenvalue of N, is a non-negative
integer, N = 0, 1, 2.... For a given excitation number N there exist three
corresponding eigenstates |j >(N) in general. Take the Ξ-type for example:
|j >(N) are then given by

|1 >(N)≡ |1, 0, 0;N >≡ |1;N >

|2 >(N)≡ |0, 1, 0;N − 1 >≡ |2;N − 1 >

|3 >(N)≡ |0, 0, 1;N − 1 >≡ |3;N − 2 > (25)

Figure 3 shows the diagrams for the states corresponding to eq. (25).
For an arbitrary type of atom, the |j >(N) are given by

|j >(N)= b
(N)
j |0, 0, 0;N − µj >, j = 1, 2, 3. (26)
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Fig. 3. The diagrammatic representations for the three basis states in the N -subspace

for one mode Ξ-type. One photon is absorbed by the atom for an electron to transfer

into the next higher level.

In eqn.(26) (µ1, µ2, µ3) are ”configuration parameters” defined to be
(0, 1, 2) for Ξ-type, (0, 1, 0) for Λ-type and (1, 0, 1) for V -type atoms, re-
spectively. In case N = 1 or 0, some of the N − µj, are negative, and then
the corresponding state |j >(N) just be eliminated. (For example N = 1 of
Ξ-type has only two eigenstates |1 >(1) and |2 >(1) while N = 0 of the same
type has only one eigenstate |1 >(0)). We can order these states as [1]

...|1 >(N), |2 >(N), |3 >(N), |1 >(N+1), |2 >(N+1), |3 >(N+1), ... (27)

and use them as the basis. With this basis the matrix representation of
the Hamiltonian is block diagonal, each block a 3× 3 submatrix (except for
N = 0 in V - and A-types and for N = 0, 1 in S-type where a submatrix
is 1 × 1 or 2 × 2). Hence in order to calculate U(t) we only have to work
in a three-dimensional subspace labeled by an excitation number N, the
(N)-subspace, with its basis |j >(N) given by eq. (26). This is the natural
generalization of the block form first noted by Jaynes in the two-level one-
mode case [1].

In the (N)-subspace the matrix representations of HI and HII are [1]

H
(N)
I = (ωN + const)I (28)

and

H
(N)
II =

−∆lµ21 ξ∗N 0
ξn 0 η∗N
0 ηN ∆rµ32

 , (29)

whereI is a 3 × 3 unit matrix, µij = µi − µj, ξN ≡
√
ξ and ηN ≡

√
N

for Λ- and V -types, whereas ηN ≡ η
√
N − 1 for Ξ-type. In case of exact

two-photon resonance, H
(N)
II in eq. (29) becomes

H
(N)
II =

−∆ ξ∗N 0
ξn 0 η∗N
0 ηN ∆

 , (30)

where ∆ the detuning parameter from the intermediate atomic level 2, is

∆ = ∆l = −∆r, for Ξ− type, (31)
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∆ = ∆l = ∆r, for Λ− type, (32)

∆ = −∆l = −∆r, for Ξ− type. (33)

Figure 2 shows the corresponding diagrams for the three types. Note that
levels 1 and 3 are degenerate with each other in Λ- and V -type systems in
the one mode case.

The eigenvalues of H
(N)
II in eq. (36) are

E(N) = −∆

2
fN and E

(N)
0 = −∆, (34)

where

fN =

√
∆2

4
+ g2n (35)

with gN =
√

|ξN |2 + |ηN |2.
Thus the diagonalization matrix is given by

V (N) =


ξ∗N
λN

ξ∗N
λN

′ η∗N
gN

hN

λN
−h′

N

λ′
N

0
ηN
λN

ηN
λ′
N

− ξ∗N
gN

 , (36)

which is unitary. Here is defined hN , h
′
N , λN and λ′N by

hN = fN +
∆

2
, h′N = fN − ∆

2
, λN =

√
2fNhN , λ

′
N =

√
2fNh′N .

V (N) diagonalizes H
(N)
II :

V (N)+H
(N)
II V (N) =

E
(N)
+ 0 0

0 E
(N)
− 0

0 0 E
(N)
0

 , (37)

Equation (37) and the unitarity of V (N) lead to the following matrix repre-
sentation of UII(t) in the (N)-subspace:

U
(N)
II (t) =

|ηN |2ei∆t/2 + |ξN |2xN(t) ξ
∗
NyN(t) ξ

∗
Nη

∗
N(−ei∆t/2 + xN(t))

ξNyN(t) x∗N η∗NyN(t)

ξNηN(−ei∆t/2 + xN(t)) ξNyN(t) |ξN |2ei∆t/2 + |ηN |2xN(t)

 ,

(38)
with following abbreviations ξN = ξn

gn
, ηN = ηN

gN
, xN(t) = 1

2
fN(hNe

ifN t +

h′Ne
−ifN t) and yN(t) =

gN
2fN

(eifN t + e−ifN t) = −i gN
2fN

sin(fN t).

The operator U
(N)
I , on the other hand, is just a phase factor: U

(N)
I (t) =

e−i(ωN+const.)t × I. In the case N = 0 (and also N = 1 for the Ξ-type) the
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dimensionality of the corresponding subspace is less than three. H
(N)
II and

U
(N)
II in this case, are given as the appropriate smaller matrices.

3. Control of three-level system

The paper [5] (see also [6]) is devoted to an optimal control problem
for a three-level quantum system. A reduction of a quantum system to the
first three eigenstates is described by a three-dimensional bilinear control
system. The problem of optimal transfer of the system between eigenstates
corresponding to the first and the third eigenvalues is stated as an optimal
control problem with a quadratic cost. The problem is transformed to a sub-
Riemannian problem on the spheres S2 and S5 (the real and complex cases).
In these cases, the problem is lifted to a right-invariant sub-Riemannian
problem on the Lie groups SO(3) and SU(3). Application of the Pontryagin
Maximum Principle on Lie groups and other techniques of sub-Riemannian
geometry yields a complete description of optimal controls and trajectories.

Description of physical picture. Assume that dynamics is governed by
the time dependent Schrödinger equation (in a system of units such that
~ = 1):

i
dψ(t)

dt
= Hψ(t), (39)

where ψ(.) : R → C3 and:

H =

 E1 Ω1 0
Ω∗

1 E2 Ω2

0 Ω∗
2 E3

 . (40)

Let the controls Ω1(.),Ω2(.), different from zero only in a fixed interval
[0, T ], be connected to the physical parameters by Ωj(t) = µjFj(t)/2, j =
1, 2, with Fj the external pulsed field and µj are the couplings (intrinsic to
the quantum system), restricted to couple only levels j and j + 1 by pairs.

This Hamiltonian is the sum of a ”drift-term” H0, plus a time dependent
potential V (t) (the control term, i.e., the lasers). The drift term is assumed
to be diagonal with eigenvalues (energy levels) ... > E3 > E2 > E1. Then
in this spectral resolution of H0, the control term V (t) is assumed to cou-
ple only the energy levels E1, E2 and E2, E3. The projected problem in
the eigenspaces corresponding to E1, E2, E3 is completely decoupled and is
described by the Hamiltonian (40).

The problem is as follows:
Assume that for time t ≤ 0 the state of the system lies in the eigenspace

corresponding to the ground eigenvalue E1. We want to determine suitable
controls Ωi(.), i = 1, 2, such that for time t ≥ T , the system reaches the
eigenspace corresponding to E3, requiring that these controls minimize the
cost (energy in the following):

J =

∫ T

0

(
|Ω1(t)|2 + |Ω2(t)|2

)
dt. (41)
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The solution of this problem is the following theorem:
Theorem 1. [5],[6] For the three-level problem with complex controls,

optimality implies resonance. More precisely, controls Ω1(.),Ω2(.) are opti-
mal, if and only if they have the following form:{

Ω1(t) = cos(t/
√
3)ei[(E2−E1)t+φ1],

Ω2(t) = sin(t/
√
3)ei[(E3−E2)t+φ2].

(42)

where φ1, φ2 are two arbitrary phases. Here, the final time T is fixed in
such a way that sub-Riemannian geodesics are parameterized by arclength,
and it is given by T =

√
3
2
π.

For the Hamiltonians of type

H(L) =

 0 e−iδφgbtb̂ 0

eiδφgbtb̂
+ 0 gatâ

0 gatâ
+ 0

 ,

H(Λ) =

 0 −e−iδφgbtb̂
+ 0

−eiδφgbtb̂ 0 gatâ
0 gatâ

+ 0

 ,

and

H(V ) =

 0 e−iδφgbtb̂ 0

eiδφgbtb̂
+ 0 −gatâ+

0 −gatâ 0


the result analogical to this theorem is an open question (see [6], [7]).
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