Proceedings of I. Vekua Institute<br>of Applied Mathematics<br>Vol. 61-62, 2011-2012

# THREE-LEVEL IDENTICAL ATOMS IN ONE AND TWO-MODE QUANTUM FIELDS I: INTERNAL ELECTRIC DIPOLE AND QUADRUPOLE COUPLING IN SINGLE ATOM BY SINGLE MODE 

Giorgadze G., Melikishvili Z.


#### Abstract

We consider a single atom from the system of identical non-overlapping atoms coupled to the one and two-mode electromagnetic quantum fields. Each atom is assumed to have only three levels, either $|1>| 2>$, and $\mid 3>$ and under the following conditions: (i) all the atom-photon interactions are electric dipole or electric quadrupole nature; (ii) only three atomic levels are included in the interaction; (iii) one or two quantized laser modes interact with this three-level system; (iv) each of these modes interacts with only one couple of levels; (v) so, from three possible couples of levels, only two of them interact directly. Levels of the third couple interact only by means of an intermediate level.


Keywords and phrases: Three-level quantum system, electromagnetic field, creation and annihilation operators, eigenstate, ground eigenvalue.

AMS subject classification (2000): 68Q05.

## 1. Three-level atom plus one mode

Consider a system of one three-level atom and one mode of the electromagnetic field. These two are coupled by the dipole/quadrupole interaction with the rotating wave approximation (RWA), and the system is described by the Hamiltonian

$$
\begin{equation*}
H=H_{A}+H_{F}+H^{\prime}, \tag{1}
\end{equation*}
$$

where the free atomic part $H_{A}$ and the free field part $H_{F}$ are

$$
\begin{equation*}
H_{A}=\sum_{j=1}^{3} \hbar \omega_{j} b_{j}^{+} b_{j} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{F}=\hbar \omega a^{+} a . \tag{3}
\end{equation*}
$$

Above $\hbar \omega_{j}, j=1,2,3$ is the $j$-th atomic level energy, $\omega$ is the single mode laser frequency, $b_{j}^{+}$and $b_{j}$ are the creation and annihilation operators of an electron at level $j$, while $a^{+}$and $a$ are those of a photon in the mode. $b_{j}, b_{j}^{+}$ obey Fermion commutation rules, and $a^{+} a$ a Boson commutation rules [1]:

$$
\begin{equation*}
\left\{b_{j}, b_{j}^{+}\right\}=\delta_{i j}, \quad\left\{b_{j}, b_{j}\right\}=0=\left\{b_{j}^{+}, \widehat{b}_{j}^{+}\right\}, \quad\left[a, a^{+}\right]=1,\left[b_{i}, \widehat{a}\right]=0, \quad \text { etc. } \tag{4}
\end{equation*}
$$

We assume that due to above mentioned couple restriction direct dipole (or quadrupole) transitions are allowed between atomic levels $\mid 1>$ and $\mid 2>$ and between $\mid 2>$ and $\mid 3>$, and forbidden between levels $\mid 1>$ and $\mid 3>$.

We express the laser field operators in terms of the annihilation and creation operators $a$, and $a^{+}$the laser field mode which has the wave vector $\mathbf{k}$, frequency $\omega=c k$ and polarization $\widehat{\mathbf{p}}$. Thus we write the laser field operator at position $R$ in the form

$$
\begin{equation*}
E(R)=i \hbar \sqrt{\frac{2 \pi \omega}{\hbar V}} \widehat{p}\left(a e^{i k R}-a^{+} e^{-i k R}\right) \tag{5}
\end{equation*}
$$

Here $\mathbf{R}$ is not an operator. So in such an approximation atom has only electronic levels.

## 2. Dipole and quadrupole transitions

We assume that atomic levels $\mid i>$ and $\mid j>$ are connected by an electric multipole transition of order $m$, i.e. that the first non-vanishing multipole transition moment between the levels of atom is that of $q^{(m)}[2]$,

$$
\begin{equation*}
q^{(m)}=q_{12} b_{1}^{+} b_{2}+q_{21} b_{2}^{+} b_{1}+q_{23} b_{2}^{+} b_{3}+q_{32} b_{3}^{+} b_{2} \tag{6}
\end{equation*}
$$

where $q_{i j} \equiv<i\left|q^{(m)}\right| j>$ is a tensor of order $m$. It is assumed for simplicity that the atom has no permanent multipole moment of order $m$ in either $|1>| 2>$, and $\mid 3>$ (see fig. 4.1). The interaction Hamiltonian $\widehat{H}^{\prime}$ is the tensor product [2]

$$
\begin{equation*}
\widehat{H}^{\prime}=-\frac{1}{m!} q^{(m)} \nabla^{m-1} E(R) \tag{7}
\end{equation*}
$$

can be written in the normally ordered form according to (5) and (6), after the RWA the $\widehat{H}^{\prime}$ is given, depending on the three possible types of the atomic level configurations, by [1]

$$
\begin{array}{rll}
H^{\prime} & =H_{\Xi}^{\prime} \equiv \xi a b_{2}^{+} b_{1}+\xi^{*} a^{+} b_{1}^{+} b_{2}+\eta a b_{3}^{+} b_{2}+\eta^{*} a^{+} b_{2}^{+} b_{3} & (\Xi-\text { type }) \\
H^{\prime} & =H_{\Lambda}^{\prime} \equiv \xi a b_{2}^{+} b_{1}+\xi^{*} a^{+} b_{1}^{+} b_{2}+\eta a^{+} b_{3}^{+} b_{2}+\eta^{*} a b_{2}^{+} b_{3} & (\Lambda-\text { type }) \\
H^{\prime} & =H_{V}^{\prime} \equiv \xi a^{+} b_{2}^{+} b_{1}+\xi^{*} a b_{1}^{+} b_{2}+\eta a b_{3}^{+} b_{2}+\eta^{*} a^{+} b_{2}^{+} b_{3} & (V-\text { type }), \tag{10}
\end{array}
$$

where

$$
\begin{equation*}
\xi_{D}=\left(\frac{2 \pi \omega}{\hbar V}\right)^{\frac{1}{2}} q_{12} \widehat{p} e^{i k R}, \quad \eta_{D}=\left(\frac{2 \pi \omega}{\hbar V}\right)^{\frac{1}{2}} q_{23} \widehat{p} e^{i k R} \tag{11}
\end{equation*}
$$

are electric dipole coupling constants and

$$
\begin{equation*}
\xi_{Q}=i\left(\frac{2 \pi \omega^{3}}{\hbar V c^{2}}\right)^{\frac{1}{2}} q_{12} \widehat{k} \widehat{p} e^{i k R}, \quad \eta_{D}=i\left(\frac{2 \pi \omega^{3}}{\hbar V c^{2}}\right)^{\frac{1}{2}} q_{23} \widehat{k} \widehat{p} e^{i k R} \tag{12}
\end{equation*}
$$

are electric quadrupole coupling constants where $k=k k$. After RWA in (4.8) the following terms are neglected, for $\Xi$-type: $a b_{2}^{+} b_{1}, \widehat{a} b_{1}^{+} b_{2}, a b_{2}^{+} b_{3}$, $a^{+} b_{3}^{+} b_{2}$; for $\Lambda$-type: $a^{+} b_{2}^{+} b_{1}, a b_{1}^{+} b_{2}, a b_{3}^{+} b_{2}, a^{+} b_{2}^{+} b_{3}$; and for $V$-type: $a b_{2}^{+} b_{1}$, $a^{+} b_{1}^{+} b_{2}, a^{+} b_{3}^{+} b_{2}, a b_{2}^{+} b_{3}$. So $\xi$ and $\eta$ are coupling constants (see fig. 1). Although it is always possible to make $\xi$ and $\eta$ real and positive, if desired, by choosing the relative phases of the state vectors properly, we treat $\xi$ and $\eta$ as complex here.


$\wedge$


Fig. 1. The three possible energy level configurations for a three-level atom. The arrows indicate the transitions where $\xi$ and $\eta$ are defined.

The Hamiltonian eq. (7) has two obvious constant operators of motion [1]: One is the total electron number operator $P_{E}$

$$
\begin{equation*}
P_{E}=b_{1}^{+} b_{1}+b_{2}^{+} b_{2}+b_{3}^{+} b_{3} \tag{13}
\end{equation*}
$$

and the other is the so-called excitation number operator $\widehat{N}$ given for each atom type by

$$
\begin{gather*}
N=a^{+} a+b_{3}^{+} b_{3}-b_{1}^{+} b_{1}+I \quad(\Xi-\text { type })  \tag{14}\\
N=a^{+} a+b_{2}^{+} b_{2}(\Lambda-\text { type })  \tag{15}\\
N=a^{+} a-b_{2}^{+} b_{2}+I \quad(V-\text { type }) \tag{16}
\end{gather*}
$$

$N$ is a sum of the photon number operator and the "atomic excitation" number operator. In eqs. (14) and (16) a unit operator I is added so that the eigenvalues of $N$ start at zero, which corresponds to no photons and the lowest atomic state.

We separate $H$ into two parts $H_{I}$ and $H_{I I}$, in which $H_{I}$ consists of $N$ and $P_{E}$ only. Thus both $H_{I}$ an $H_{I I}$ are constants of motion:

$$
\begin{equation*}
H=H_{I}+H_{I} I, \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[H_{I}, H_{I} I\right]=0, \tag{18}
\end{equation*}
$$

where for $\Xi$-type:

$$
\begin{equation*}
H_{I}=\hbar \omega(N-I)+\hbar \omega_{2} P_{E}, \quad H_{I I}=-\hbar \Delta_{l} b_{1}^{+} b_{1}-\Delta_{r} b_{3}^{+} b_{3}+H_{\Xi}^{\prime} \tag{19}
\end{equation*}
$$

for $\Lambda$-type:

$$
\begin{equation*}
H_{I}=\hbar \omega N+\hbar\left(\omega_{2}-\omega\right) P_{E}, \quad H_{I I}=-\hbar \triangle_{l} b_{1}^{+} b_{1}-\hbar \triangle_{r} b_{3}^{+} b_{3}+H_{\Xi}^{\prime} \tag{20}
\end{equation*}
$$

and for $V$-type:

$$
\begin{equation*}
H_{I}=\hbar \omega(N-I)+\hbar\left(\omega_{2}+\omega\right) P_{E}, H_{I I}=\hbar \Delta_{l} b_{1}^{+} b_{1}+\hbar \Delta_{r} b_{3}^{+} b_{3}+\widehat{H}_{V}^{\prime} . \tag{21}
\end{equation*}
$$

We have defined the detuning parameters $\Delta_{l}$ and $\Delta_{r}$ by

$$
\begin{equation*}
\Delta_{l} \equiv\left|\omega_{12}\right|-\omega, \Delta_{r} \equiv\left|\omega_{23}\right|-\omega \tag{22}
\end{equation*}
$$

with $\omega_{i j} \mid=\omega_{i}-\omega_{j}$, where $l$ and $r$ stands for "left" and "right", respectively as in fig. 2. The separation given in eq. (17), with eq. (18) as a consequence, was first noted by Walls for $\Xi$-type [7]. Note that the separation of $H$ into $H_{I}$ and $H_{I I}$ shown in eq. (17) and eqs. (18) is not unique. $H_{I I}$ as chosen in eqs. (18), however, provides the maximum symmetry to the resultant expressions [1].


Fig. 2. The atomic level diagrams under the two-photon resonance condition. Two mode case. Mode $l$ couples with the dipole $d_{12}$ and mode $r$ couples with the dipole $d_{23}$.

Due to eq. (18) the time translation operator $U(t) \equiv \exp (-i H t)$ factors:

$$
\begin{equation*}
U(t)=U_{I}(t) U_{I I}(t) \tag{23}
\end{equation*}
$$

with

$$
\begin{equation*}
U_{I}(t)=\exp \left(-i H_{I} t\right), U_{I I}(t)=\exp \left(-i H_{I I} t\right) \tag{24}
\end{equation*}
$$

$U(t)$ was calculated by Yoon and Eberly [1] in terms of a matrix representation with a set of properly ordered Fock states as its basis. A Fock state $\mid n_{1}^{A}, n_{2}^{A}, n_{3}^{A} ; n^{F}>$ is a common eigenstate of $P_{E}$ and $N$ and hence of $H_{I}$, where $n_{j}^{A}, j=1,2,3$ is the electron occupation number at the $j$ th atomic level, and $n^{F}$ is the photon occupation number in the mode. We restrict ourselves to the one-electron case: $P_{E}=n_{1}^{A}+n_{2}^{A}+n_{3}^{A}=1$ for a while. An excitation number $N$, which is an eigenvalue of $N$, is a non-negative integer, $N=0,1,2 \ldots$. For a given excitation number $N$ there exist three corresponding eigenstates $\mid j>^{(N)}$ in general. Take the $\Xi$-type for example: $\mid j>^{(N)}$ are then given by

$$
\begin{align*}
\left|1>^{(N)} \equiv\right| 1,0,0 ; N>\equiv \mid 1 ; N> \\
\left|2>^{(N)} \equiv\right| 0,1,0 ; N-1>\equiv \mid 2 ; N-1> \\
\left|3>^{(N)} \equiv\right| 0,0,1 ; N-1>\equiv \mid 3 ; N-2> \tag{25}
\end{align*}
$$

Figure 3 shows the diagrams for the states corresponding to eq. (25). For an arbitrary type of atom, the $\mid j>^{(N)}$ are given by

$$
\begin{equation*}
\left|j>^{(N)}=b_{j}^{(N)}\right| 0,0,0 ; N-\mu_{j}>, j=1,2,3 \tag{26}
\end{equation*}
$$



Fig. 3. The diagrammatic representations for the three basis states in the $N$-subspace for one mode $\Xi$-type. One photon is absorbed by the atom for an electron to transfer into the next higher level.

In eqn.(26) $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ are "configuration parameters" defined to be $(0,1,2)$ for $\Xi$-type, $(0,1,0)$ for $\Lambda$-type and $(1,0,1)$ for $V$-type atoms, respectively. In case $N=1$ or 0 , some of the $N-\mu_{j}$, are negative, and then the corresponding state $\mid j>^{(N)}$ just be eliminated. (For example $N=1$ of $\Xi$-type has only two eigenstates $\mid 1>^{(1)}$ and $\mid 2>^{(1)}$ while $N=0$ of the same type has only one eigenstate $\left.\mid 1>^{(0)}\right)$. We can order these states as [1]

$$
\begin{equation*}
\ldots\left|1>^{(N)},\left|2>^{(N)},\left|3>^{(N)},\left|1>^{(N+1)},\left|2>^{(N+1)},\right| 3>^{(N+1)}, \ldots\right.\right.\right.\right. \tag{27}
\end{equation*}
$$

and use them as the basis. With this basis the matrix representation of the Hamiltonian is block diagonal, each block a $3 \times 3$ submatrix (except for $N=0$ in $V$ - and $A$-types and for $N=0,1$ in $S$-type where a submatrix is $1 \times 1$ or $2 \times 2$ ). Hence in order to calculate $U(t)$ we only have to work in a three-dimensional subspace labeled by an excitation number $N$, the $(N)$-subspace, with its basis $\mid j>^{(N)}$ given by eq. (26). This is the natural generalization of the block form first noted by Jaynes in the two-level onemode case [1].

In the $(N)$-subspace the matrix representations of $H_{I}$ and $H_{I I}$ are [1]

$$
\begin{equation*}
H_{I}^{(N)}=(\omega N+\text { const }) I \tag{28}
\end{equation*}
$$

and

$$
H_{I I}^{(N)}=\left(\begin{array}{ccc}
-\Delta_{l} \mu_{21} & \xi_{N}^{*} & 0  \tag{29}\\
\xi_{n} & 0 & \eta_{N}^{*} \\
0 & \eta_{N} & \Delta_{r} \mu_{32}
\end{array}\right)
$$

where $I$ is a $3 \times 3$ unit matrix, $\mu_{i j}=\mu_{i}-\mu_{j}, \xi_{N} \equiv \sqrt{\xi}$ and $\eta_{N} \equiv \sqrt{N}$ for $\Lambda$ - and $V$-types, whereas $\eta_{N} \equiv \eta \sqrt{N-1}$ for $\Xi$-type. In case of exact two-photon resonance, $H_{I I}^{(N)}$ in eq. (29) becomes

$$
H_{I I}^{(N)}=\left(\begin{array}{ccc}
-\Delta & \xi_{N}^{*} & 0  \tag{30}\\
\xi_{n} & 0 & \eta_{N}^{*} \\
0 & \eta_{N} & \Delta
\end{array}\right),
$$

where $\Delta$ the detuning parameter from the intermediate atomic level 2 , is

$$
\begin{equation*}
\Delta=\Delta_{l}=-\Delta_{r}, \text { for } \Xi-\text { type }, \tag{31}
\end{equation*}
$$

$$
\begin{gather*}
\Delta=\Delta_{l}=\Delta_{r}, \text { for } \Lambda-\text { type }  \tag{32}\\
\Delta=-\Delta_{l}=-\Delta_{r}, \text { for } \Xi-\text { type. } \tag{33}
\end{gather*}
$$

Figure 2 shows the corresponding diagrams for the three types. Note that levels 1 and 3 are degenerate with each other in $\Lambda$ - and $V$-type systems in the one mode case.

The eigenvalues of $H_{I I}^{(N)}$ in eq. (36) are

$$
\begin{equation*}
E^{(N)}=-\frac{\Delta}{2} f_{N} \text { and } E_{0}^{(N)}=-\Delta \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{N}=\sqrt{\frac{\Delta^{2}}{4}+g_{n}^{2}} \tag{35}
\end{equation*}
$$

with $g_{N}=\sqrt{\left|\xi_{N}\right|^{2}+\left|\eta_{N}\right|^{2}}$.
Thus the diagonalization matrix is given by

$$
V^{(N)}=\left(\begin{array}{ccc}
\frac{\xi_{N}^{*}}{\lambda_{N}} & \frac{\xi_{N}^{*}}{\lambda_{N}} & \frac{\eta_{N}^{*}}{g_{N}}  \tag{36}\\
\frac{h_{N}}{\lambda_{N}} & -\frac{h_{N}^{\prime}}{\lambda_{N}^{\prime}} & 0 \\
\frac{\eta_{N}}{\lambda_{N}} & \frac{\eta_{N}}{\lambda_{N}^{\prime}} & -\frac{\xi_{N}^{*}}{g_{N}}
\end{array}\right)
$$

which is unitary. Here is defined $h_{N}, h_{N}^{\prime}, \lambda_{N}$ and $\lambda_{N}^{\prime}$ by

$$
h_{N}=f_{N}+\frac{\Delta}{2}, h_{N}^{\prime}=f_{N}-\frac{\Delta}{2}, \lambda_{N}=\sqrt{2 f_{N} h_{N}}, \lambda_{N}^{\prime}=\sqrt{2 f_{N} h_{N}^{\prime}} .
$$

$V^{(N)}$ diagonalizes $H_{I I}^{(N)}$ :

$$
V^{(N)+} H_{I I}^{(N)} V^{(N)}=\left(\begin{array}{ccc}
E_{+}^{(N)} & 0 & 0  \tag{37}\\
0 & E_{-}^{(N)} & 0 \\
0 & 0 & E_{0}^{(N)}
\end{array}\right)
$$

Equation (37) and the unitarity of $V^{(N)}$ lead to the following matrix representation of $U_{I I}(t)$ in the $(N)$-subspace:

$$
U_{I I}^{(N)}(t)=\left(\begin{array}{ccc}
\left|\bar{\eta}_{N}\right|^{2} e^{i \Delta t / 2}+\left|\bar{\xi}_{N}\right|^{2} x_{N}(t) & \bar{\xi}_{N}^{*} y_{N}(t) & \bar{\xi}_{N}^{*} \bar{\eta}_{N}^{*}\left(-e^{i \Delta t / 2}+x_{N}(t)\right)  \tag{38}\\
\bar{\xi}_{N} y_{N}(t) & x_{N}^{*} & \bar{\eta}_{N}^{*} y_{N}(t) \\
\bar{\xi}_{N} \bar{\eta}_{N}\left(-e^{i \Delta t / 2}+x_{N}(t)\right) & \bar{\xi}_{N} y_{N}(t) & \left|\bar{\xi}_{N}\right|^{2} e^{i \Delta t / 2}+\left|\bar{\eta}_{N}\right|^{2} x_{N}(t)
\end{array}\right),
$$

with following abbreviations $\bar{\xi}_{N}=\frac{\xi_{n}}{g_{n}}, \bar{\eta}_{N}=\frac{\eta_{N}}{g_{N}}, x_{N}(t)=\frac{1}{2} f_{N}\left(h_{N} e^{i f_{N} t}+\right.$ $\left.h_{N}^{\prime} e^{-i f_{N} t}\right)$ and $y_{N}(t)=\frac{g_{N}}{2 f_{N}}\left(e^{i f_{N} t}+e^{-i f_{N} t}\right)=-i \frac{g_{N}}{2 f_{N}} \sin \left(f_{N} t\right)$.

The operator $U_{I}^{(N)}$, on the other hand, is just a phase factor: $U_{I}^{(N)}(t)=$ $e^{-i(\omega N+\text { const.)t }} \times I$. In the case $N=0$ (and also $N=1$ for the $\Xi$-type) the
dimensionality of the corresponding subspace is less than three. $H_{I I}^{(N)}$ and $U_{I I}^{(N)}$ in this case, are given as the appropriate smaller matrices.

## 3. Control of three-level system

The paper [5] (see also [6]) is devoted to an optimal control problem for a three-level quantum system. A reduction of a quantum system to the first three eigenstates is described by a three-dimensional bilinear control system. The problem of optimal transfer of the system between eigenstates corresponding to the first and the third eigenvalues is stated as an optimal control problem with a quadratic cost. The problem is transformed to a subRiemannian problem on the spheres $S^{2}$ and $S^{5}$ (the real and complex cases). In these cases, the problem is lifted to a right-invariant sub-Riemannian problem on the Lie groups $S O(3)$ and $S U(3)$. Application of the Pontryagin Maximum Principle on Lie groups and other techniques of sub-Riemannian geometry yields a complete description of optimal controls and trajectories.

Description of physical picture. Assume that dynamics is governed by the time dependent Schrödinger equation (in a system of units such that $\hbar=1$ ):

$$
\begin{equation*}
i \frac{d \psi(t)}{d t}=H \psi(t) \tag{39}
\end{equation*}
$$

where $\psi():. \mathbb{R} \rightarrow \mathbb{C}^{*}$ and:

$$
H=\left(\begin{array}{ccc}
E_{1} & \Omega_{1} & 0  \tag{40}\\
\Omega_{1}^{*} & E_{2} & \Omega_{2} \\
0 & \Omega_{2}^{*} & E_{3}
\end{array}\right)
$$

Let the controls $\Omega_{1}(),. \Omega_{2}($.$) , different from zero only in a fixed interval$ $[0, T]$, be connected to the physical parameters by $\Omega_{j}(t)=\mu_{j} F_{j}(t) / 2, j=$ 1,2 , with $F_{j}$ the external pulsed field and $\mu_{j}$ are the couplings (intrinsic to the quantum system), restricted to couple only levels $j$ and $j+1$ by pairs.

This Hamiltonian is the sum of a "drift-term" $H_{0}$, plus a time dependent potential $V(t)$ (the control term, i.e., the lasers). The drift term is assumed to be diagonal with eigenvalues (energy levels) ... $>E_{3}>E_{2}>E_{1}$. Then in this spectral resolution of $H_{0}$, the control term $V(t)$ is assumed to couple only the energy levels $E_{1}, E_{2}$ and $E_{2}, E_{3}$. The projected problem in the eigenspaces corresponding to $E_{1}, E_{2}, E_{3}$ is completely decoupled and is described by the Hamiltonian (40).

The problem is as follows:
Assume that for time $t \leq 0$ the state of the system lies in the eigenspace corresponding to the ground eigenvalue $E_{1}$. We want to determine suitable controls $\Omega_{i}(),. i=1,2$, such that for time $t \geq T$, the system reaches the eigenspace corresponding to $E_{3}$, requiring that these controls minimize the cost (energy in the following):

$$
\begin{equation*}
J=\int_{0}^{T}\left(\left|\Omega_{1}(t)\right|^{2}+\left|\Omega_{2}(t)\right|^{2}\right) d t \tag{41}
\end{equation*}
$$

The solution of this problem is the following theorem:
Theorem 1. [5],[6] For the three-level problem with complex controls, optimality implies resonance. More precisely, controls $\Omega_{1}(),. \Omega_{2}($.$) are opti-$ mal, if and only if they have the following form:

$$
\left\{\begin{array}{l}
\Omega_{1}(t)=\cos (t / \sqrt{3}) e^{i\left[\left(E_{2}-E_{1}\right) t+\varphi_{1}\right]},  \tag{42}\\
\Omega_{2}(t)=\sin (t / \sqrt{3}) e^{i\left(\left[E_{3}-E_{2}\right) t+\varphi_{2}\right]} .
\end{array}\right.
$$

where $\varphi_{1}, \varphi_{2}$ are two arbitrary phases. Here, the final time $T$ is fixed in such a way that sub-Riemannian geodesics are parameterized by arclength, and it is given by $T=\frac{\sqrt{3}}{2} \pi$.

For the Hamiltonians of type

$$
\begin{gathered}
H^{(L)}=\left(\begin{array}{ccc}
0 & e^{-i \delta \varphi} g_{b} t \hat{b} & 0 \\
e^{i \delta \varphi} g_{b} t \hat{b}^{+} & 0 & g_{a} t \hat{a} \\
0 & g_{a} t \hat{a}^{+} & 0
\end{array}\right), \\
H^{(\Lambda)}=\left(\begin{array}{ccc}
0 & -e^{-i \delta \varphi} g_{b} t \hat{b}^{+} & 0 \\
-e^{i \delta \varphi} g_{b} t \hat{b} & 0 & g_{a} t \hat{a} \\
0 & g_{a} t \hat{a}^{+} & 0
\end{array}\right),
\end{gathered}
$$

and

$$
H^{(V)}=\left(\begin{array}{ccc}
0 & e^{-i \delta \varphi} g_{b} t \hat{b} & 0 \\
e^{i \delta \varphi} g_{b} t \hat{b}^{+} & 0 & -g_{a} t \hat{a}^{+} \\
0 & -g_{a} t \hat{a} & 0
\end{array}\right)
$$

the result analogical to this theorem is an open question (see [6], [7]).
Acknowledgement. The work was supported by the Shota Rustaveli National Science Foundation and STCU (Grant \# 5622).

## REFERENCES

1. Yoo H.I., Eberly J.H. Dynamical theory of an atom with two or three levels. Physics Reports, 118, 5 (1985), 239-337.
2. Freedhoff H.S. Master equation for electric quadrupole transitions. J. Phys. B: At. Mol. Opt. Phys., 22 (1989), 435-443.
3. Walls D.F. A quantum theoretic treatment of double-resonance phenomena. J. Phys. A: Gen. Phys., 4 (1971), 638-645.
4. Agrachev A.A., Sachkov Y.L. Control theory from the geometric viewpoint. Encyclopedia of Mathematical Sciences, 87. Control Theory and Optimization, II. SpringerVerlag, Berlin, 412 pp., 2004.
5. Boscain U.Th. Chambrion, Jean-Paul Gauthier. On the $K+P$ problem for a three-level quantum system: optimality implies resonance. J. Dynam. Control system, 8 (2002), 547-572.
6. Melikishvili Z.G., Giorgadze, G. Atom-photon interactions in connection with quantum computations: a three-level atom in a two-mode field. J. Math. Sci. (N.Y.), 153, 2 (2008), 167-185.
7. Giorgadze G. Geometry of Quantum Computation. Nova Publishers, 2012.

Received 11.09.2012; revised 21.10.2012; accepted 3.11.2012.
Authors' addresses:
G. Giorgadze
I. Vekua Institute of Applied Mathematics of
Iv. Javakhishvili Tbilisi State University

2, University St., Tbilisi 0186
E-mail: gia.giorgadze@tsu.ge
Z. Melikishvili

Institute of Cybernetics
Georgian Technical University
5, S. Euli st., Tbilisi 0186
E-mail: zaza.melikishvili@gmail.com

